Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(24): 243901, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213944

RESUMEN

In semiconductor nano-optomechanical resonators, several forms of light-matter interaction can enrich the canonical radiation pressure coupling of light and mechanical motion and give rise to new dynamical regimes. Here, we observe an electro-optomechanical modulation instability in a gallium arsenide disk resonator. The regime is evidenced by the concomitant formation of regular and dense combs in the radio-frequency and optical spectrums of the resonator associated with a permanent pulsatory dynamics of the mechanical motion and optical intensity. The mutual coupling between light, mechanical oscillations, carriers, and heat, notably through photothermal interactions, stabilizes an extended mechanical comb in the ultrahigh frequency range that can be controlled optically.

2.
Nanoscale ; 12(5): 2939-2945, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31974536

RESUMEN

Atomic force spectroscopy and microscopy are invaluable tools to characterize nanostructures and biological systems. State-of-the-art experiments use resonant driving of mechanical probes, whose frequency reaches MHz in the fastest commercial instruments where cantilevers are driven at nanometer amplitude. Stiffer probes oscillating at tens of picometers provide a better access to short-range interactions, yielding images of molecular bonds, but they are little amenable to high-speed operation. Next-generation investigations demand combining very high frequency (>100 MHz) with deep sub-nanometer oscillation amplitude, in order to access faster (below microsecond) phenomena with molecular resolution. Here we introduce a resonating optomechanical atomic force probe operated fully optically at a frequency of 117 MHz, two decades above cantilevers, with a Brownian motion amplitude four orders below. Based on Silicon-On-Insulator technology, the very high frequency probe demonstrates single-pixel sensing of contact and non-contact interactions with sub-picometer amplitude, breaking open current limitations for faster and finer force spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA