Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomater Sci Polym Ed ; 35(13): 2090-2114, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38953859

RESUMEN

Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.


Asunto(s)
Pulpa Dental , Osteogénesis , Células Madre , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Humanos , Pulpa Dental/citología , Osteogénesis/efectos de los fármacos , Células Madre/citología , Porosidad , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanoestructuras/química , Huesos/citología , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Ensayo de Materiales , Adhesión Celular/efectos de los fármacos , Hierro/química
2.
Int J Biol Macromol ; 187: 281-295, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34314794

RESUMEN

This research aimed to design innovative therapeutic bio-composites that enhance odontogenic and osteogenic differentiation of human dental pulp-derived mesenchymal stem cells (h-DPSCs) in-vitro regeneration. Herein, we report the fabrication of scaffolds containing chitosan, Ca-SAPO-34 monometallic and/or Fe-Ca-SAPO-34 bimetallic nanoparticles by freeze-drying technique. The scaffolds and nanoparticles were characterized using ICP-AES, FT-IR, XRD, TGA, TEM, BET, SEM, and EDS methods. The effects of SAPO-34 and nanoparticles were investigated by changes on the physicochemical properties of scaffolds including swelling ratio, density, porosity, bio-degradation, mechanical behavior, and biomineralization. Cell viability, cell adhesion and cytotoxicity of Ca-SAPO-34/CS and Fe-Ca-SAPO-34 scaffolds were investigated by MTT assay and SEM on h-DPSCs which revealed cell proliferation no toxicity on scaffolds. Cell tests demonstrated that Ca-SAPO-34/CS scaffold clearly displayed a positive effect on differentiation of hDPSCs into osteogenic/odontogenic cells and moderate effect on cell proliferation. Moreover, the incorporation of Fe2O3 to Ca-SAPO-34/CS scaffold promoted the proliferation of hDPSCs and osteogenic differentiation. Alizarin red, Alkaline phosphatase and QRT-PCR results showed that Fe-Ca-loaded SAPO-34/CS can lead to osteoblast/odontoblast differentiation in DPSCs through the up-regulation of related genes, thus indicating that Fe-Ca-SAPO-34/CS has remarkable prospects as a biomaterial for hard tissue engineering.


Asunto(s)
Calcio/química , Quitosano/química , Pulpa Dental/citología , Hierro/química , Células Madre Mesenquimatosas/fisiología , Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Zeolitas/química , Adhesión Celular , Proliferación Celular , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Liofilización , Dureza , Humanos , Nanopartículas del Metal , Nanotecnología , Osteogénesis , Fenotipo , Porosidad , Propiedades de Superficie
3.
Mol Divers ; 19(1): 29-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25234540

RESUMEN

A general synthetic route for the exclusive preparation of tetrasubstituted imidazoles, possessing benzylic methyl groups has been developed using Sb2O3 via solvent-free, one-pot reaction conditions. Detailed results from our investigation on the bromination of the benzylic methyl groups of imidazoles are described. The products generated during this study were utilized as substrates for the synthesis of organosilicon-containing imidazoles. Synthesis of tris(triorganosilyl)methylimidazole derivatives was carried out using organolithium reagents (RSiMe2)3CLi, (R= H, Me, Ph) prepared via metalation of (RSiMe2)3CH with lithiumdiisopropylamide or methyllithium in THF, in excellent yields. (RSiMe2)3CLi, (R= Me, Ph) were treated with formylated imidazole to afford imidazole containing 2,2-bis(organosilyl)ethenyl groups. 2-(4-(2,2-bis(trimethylsilyl)vinyl)phenyl)-1,4,5-triphenyl-1H-imidazole was obtained via Peterson reaction in high yield. However, compound 2-(4-(2,2-bis(dimethyl(phenyl)silyl)vinyl)phenyl)-1,4,5-triphenyl-1H-imidazole was obtained in low yield likely because of the steric hindrance of the (PhSiMe2)3C- group.


Asunto(s)
Antimonio/química , Imidazoles/química , Compuestos de Organosilicio/química , Compuestos de Organosilicio/síntesis química , Técnicas de Química Sintética , Halogenación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA