Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177499

RESUMEN

Prognostic and health management technologies are increasingly important in many fields where reducing maintenance costs is critical. Non-destructive testing techniques and the Internet of Things (IoT) can help create accurate, two-sided digital models of specific monitored objects, enabling predictive analysis and avoiding risky situations. This study focuses on a particular application: monitoring an endodontic file during operation to develop a strategy to prevent breakage. To this end, the authors propose an innovative, non-invasive technique for early fault detection based on digital twins and infrared thermography measurements. They developed a digital twin of a NiTi alloy endodontic file that receives measurement data from the real world and generates the expected thermal map of the object under working conditions. By comparing this virtual image with the real one acquired by an IR camera, the authors were able to identify an anomalous trend and avoid breakage. The technique was calibrated and validated using both a professional IR camera and an innovative low-cost IR scanner previously developed by the authors. By using both devices, they could identify a critical condition at least 11 s before the file broke.

2.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214459

RESUMEN

In the field of Smart Cities, especially for Smart Street Lighting and Smart Mobility, the use of low-cost devices is considered an advantageous solution due to their easy availability, cost reduction and, consequently, technological and methodological development. However, this type of transducers shows many critical issues, e.g., in metrological and reliability terms, which can significantly compromise their functionality and safety. Such issue has a large relevance when temperature and humidity are cause of a rapid aging of sensors. The aim of this work is to evaluate the effects of accelerated aging in extreme climatic conditions on the performance of a control system, based on a low-cost ultrasonic distance sensor, for public-lighting management in Smart Cities. The presented architecture allows for the detection of vehicles, pedestrians and small animals and contains a dedicated algorithm, developed in an Edge/Cloud environment, that is able to display the acquired measurements to users connected on the web. The obtained results highlight that the effect of accelerated aging is to significantly reduce the linearity of the calibration curve of the sensor and, moreover, to exponentially increase the number of outliers and invalid measurements. These limitations can be overcome by developing an appropriate self-calibration strategy.


Asunto(s)
Iluminación , Ultrasonido , Envejecimiento , Animales , Ciudades , Reproducibilidad de los Resultados
3.
Sensors (Basel) ; 21(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803353

RESUMEN

In the present work, a spar-buoy scaled model was designed and built through a "Lab-on-Sea" unit, equipped with an energy harvesting system. Such a system is based on deformable bands, which are loyal to the unit, to convert wave motion energy into electricity by means of piezo patch transducers. In a preliminary stage, the scaled model, suitable for tests in a controlled ripples-type wave motion channel, was tested in order to verify the "fixed-point" assumption in pitch and roll motions and, consequently, to optimize energy harvesting. A special type of structure was designed, numerically simulated, and experimentally verified. The proposed solution represents an advantageous compromise between the lightness of the used materials and the amount of recoverable energy. The energy, which was obtained from the piezo patch transducers during the simulations in the laboratory, was found to be enough to self-sustain the feasible on-board sensors and the remote data transmission system.

4.
Sensors (Basel) ; 21(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562171

RESUMEN

Digital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate. This represents a widespread strengthening technique of existing reinforced concrete structures, but its effectiveness is strongly related to the bond behavior between composite fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different environmental conditions (humidity and temperature) and finally tested up to failure under three-point bending. Mechanical tests are carried out vis-à-vis DIC measurements using two distinct cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-concrete interface. This experimental setup makes it possible to interpret the mechanical behavior and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface obtained by DIC in the pre- and postcracking phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA