Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbes Environ ; 38(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935122

RESUMEN

Cercospora leaf spot (CLS) is caused by Cercospora canescens and is one of the most important diseases of mungbean (Vigna radiata). Cercospora leaf spot may result in economic loss in production areas. The present study investigated the potential of Bacillus velezensis S141 as a biocontrol agent for C. canescens PAK1 growth on culture plates. Cell-free secretions from a dual culture of S141+PAK1 inhibited fungal growth more than those from a single culture of S141. The biocontrol efficiency of S141 against Cercospora leaf spot on mungbean was then evaluated by spraying. The disease severity of Cercospora leaf spot was significantly reduced in plants treated with S141, with a control efficiency of 83% after 2 days of infection. Comparative transcriptomics and qRT-PCR ana-lyses of S141 during C. canescens inhibition were performed to elucidate the antifungal mechanisms underlying its antifungal activity against Cercospora leaf spot. According to the differentially expressed genes, most up-regulated genes involved in the biosynthetic genes encoding enzymatic hydrolases, including protease, ß-glucanase, and N-acyl glucosaminase, were detected in strain S141 following its interaction. Moreover, genes related to secondary metabolites (surfactin, bacilysin, and bacillomycin D) were up-regulated. Collectively, these results suggest that S141 exhibited strong antifungal activity against C. canescens due to multiple enzymatic hydrolases and secondary metabolites. Therefore, the present study provides insights into the biological network responsible for the antifungal activity of B. velezensis S141 against C. canescens.


Asunto(s)
Bacillus , Vigna , Antifúngicos/farmacología , Antifúngicos/metabolismo , Vigna/microbiología , Cercospora/metabolismo , Bacillus/genética , Enfermedades de las Plantas/microbiología
2.
Sci Rep ; 11(1): 16604, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400661

RESUMEN

Host-specific legume-rhizobium symbiosis is strictly controlled by rhizobial type III effectors (T3Es) in some cases. Here, we demonstrated that the symbiosis of Vigna radiata (mung bean) with Bradyrhizobium diazoefficiens USDA110 is determined by NopE, and this symbiosis is highly dependent on host genotype. NopE specifically triggered incompatibility with V. radiata cv. KPS2, but it promoted nodulation in other varieties of V. radiata, including KPS1. Interestingly, NopE1 and its paralogue NopE2, which exhibits calcium-dependent autocleavage, yield similar results in modulating KPS1 nodulation. Furthermore, NopE is required for early infection and nodule organogenesis in compatible plants. Evolutionary analysis revealed that NopE is highly conserved among bradyrhizobia and plant-associated endophytic and pathogenic bacteria. Our findings suggest that V. radiata and B. diazoefficiens USDA110 may use NopE to optimize their symbiotic interactions by reducing phytohormone-mediated ETI-type (PmETI) responses via salicylic acid (SA) biosynthesis suppression.


Asunto(s)
Bradyrhizobium/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/fisiología , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Vigna/microbiología , Secuencia de Bases , Bradyrhizobium/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Bacterianos , Mutación , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , ARN Bacteriano/biosíntesis , ARN Bacteriano/genética , ARN de Planta/biosíntesis , ARN de Planta/genética , Ácido Salicílico/metabolismo , Simbiosis , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA