Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39063726

RESUMEN

Combinative methodologies have the potential to address the drawbacks of unimodal non-destructive testing and evaluation (NDT & E) when inspecting multilayer structures. The aim of this study is to investigate the integration of information gathered via phased-array ultrasonic testing (PAUT) and pulsed thermography (PT), addressing the challenges posed by surface-level anomalies in PAUT and the limited deep penetration in PT. A center-of-mass-based registration method was proposed to align shapeless inspection results in consecutive insertions. Subsequently, the aligned inspection images were merged using complementary techniques, including maximum, weighted-averaging, depth-driven combination (DDC), and wavelet decomposition. The results indicated that although individual inspections may have lower mean absolute error (MAE) ratings than fused images, the use of complementary fusion improved defect identification in the total number of detections across numerous layers of the structure. Detection errors are analyzed, and a tendency to overestimate defect sizes is revealed with individual inspection methods. This study concludes that complementary fusion provides a more comprehensive understanding of overall defect detection throughout the thickness, highlighting the importance of leveraging multiple modalities for improved inspection outcomes in structural analysis.

2.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501731

RESUMEN

Composite materials are one of the primary structural components in most current transportation applications, such as the aerospace industry. Composite material diagnostics is a promising area in the fight against structural damage in aircraft and spaceships. Detection and diagnostic technologies often provide analysts with a valuable and rapid mechanism to monitor the health and safety of composite materials. Although many attempts have been made to develop damage detection techniques and make operations more efficient, there is still a need to develop/improve existing methods. Pulsed thermography (PT) technology was used in this study to obtain healthy and defective data sets from custom-designed composite samples having similar dimensions but different thicknesses (1.6 and 3.8). Ten carbon fibre-reinforced plastic (CFRP) panels were tested. The samples were subjected to impact damage of various energy levels, ranging from 4 to 12 J. Two different methods have been applied to detect and classify the damage to the composite structures. The first applied method is the statistical analysis, where seven different statistical criteria have been calculated. The final results have proved the possibility of detecting the damaged area in most cases. However, for a more accurate detection technique, a machine learning method was applied to thermal images; specifically, the Cube Support Vector Machine (SVM) algorithm was selected. The prediction accuracy of the proposed classification models was calculated within a confusion matrix based on the dataset patterns representing the healthy and defective areas. The classification results ranged from 78.7% to 93.5%, and these promising results are paving the way to develop an automated model to efficiently evaluate the damage to composite materials based on the non-distractive testing (NDT) technique.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Termografía , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Máquina de Vectores de Soporte , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA