Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Virus Res ; 346: 199404, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782262

RESUMEN

Parapoxviruses (PPV) of animals are spread worldwide. While the Orf virus (ORFV) species is a molecularly well-characterized prototype pathogen of small ruminants, the genomes of virus species affecting large ruminants, namely Bovine papular stomatitis virus (BPSV) and Pseudocowpox virus (PCPV), are less well known. Using Nanopore sequencing we retrospectively show the whole genome sequences (WGS) of six BPSV, three PCPV isolates and an attenuated ORFV strain, originating from different geographic locations. A phylogenetic tree shows that the de novo assembled genomes belong to PPV species including WGS of reference PPV. Remarkably, Nanopore sequencing allowed the molecular resolution of inverted terminal repeats (ITR) and the hairpin loop within the de novo assembled WGS. Additionally, peculiarities regarding map location of two genes and the heterogeneity of a genomic region were noted. Details for the molecular variability of an interferon response modulatory gene (ORF116) and the PCPV specificity of gene 073.5 are reported. In summary, WGS gained by Nanopore sequencing allowed analysis of complete PPV genomes and confident virus species attribution within a phylogenetic tree avoiding uncertainty of limited gene-based diagnostics. Nanopore-based WGS provides robust comparison of PPV genomes and reliable identity determination of new Poxviruses.


Asunto(s)
Enfermedades de los Bovinos , Genoma Viral , Parapoxvirus , Filogenia , Infecciones por Poxviridae , Secuenciación Completa del Genoma , Animales , Bovinos , Parapoxvirus/genética , Parapoxvirus/clasificación , Parapoxvirus/aislamiento & purificación , Infecciones por Poxviridae/virología , Infecciones por Poxviridae/veterinaria , Estudios Retrospectivos , Enfermedades de los Bovinos/virología , Secuenciación de Nanoporos/métodos , ADN Viral/genética
2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-471527

RESUMEN

The authors have withdrawn this manuscript due to a duplicate posting of manuscript number BIORXIV/2021/468942. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-468777

RESUMEN

Interferons are a major part of the anti-viral innate defense system. Successful pathogens, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), need to overcome these defenses to establish an infection. Early induction of interferons (IFNs) protects against severe coronavirus disease 2019 (COVID-19). In line with this, SARS-CoV-2 is inhibited by IFNs in vitro, and IFN-based therapies against COVID-19 are investigated in clinical trials. However, SARS-CoV-2 continues to adapt to the human population resulting in the emergence of variants characterized by increased transmission fitness and/or decreased sensitivity to preventive or therapeutic measures. It has been suggested that the efficient spread of these so-called "Variants of Concern" (VOCs) may also involve reduced sensitivity to IFNs. Here, we examined whether the four current VOCs (Alpha, Beta, Gamma and Delta) differ in replication efficiency or IFN sensitivity from an early isolate of SARS-CoV-2. All viruses replicated in a human lung cell line and in iPSC-derived alveolar type II cells (iAT2). The Delta variant showed accelerated replication kinetics and higher infectious virus production compared to the early 2020 isolate. Replication of all SARS-CoV-2 VOCs was reduced in the presence of exogenous type I, II and III IFNs. On average, the Alpha variant was the least susceptible to IFNs and the Alpha, Beta and Gamma variants show increased resistance against type III IFN. Although the Delta variant has outcompeted all other variants in humans it remained as sensitive to IFNs as an early 2020 SARS-CoV-2 isolate. This suggests that increased replication fitness rather than IFN resistance may be a reason for its dominance. Our results may help to understand changes in innate immune susceptibility of VOCs, and inform clinical trials exploring IFN-based COVID-19 therapies.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-468942

RESUMEN

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human cells. To date, several "Variants of Concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the four SARS-CoV-2 VOCs (Alpha, Beta, Gamma and Delta) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all four VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had little effect, while knock-down of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than four orders of magnitude. In addition, an antibody directed against the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominating Delta variant. IMPORTANCERecent results showed that an early SARS-CoV-2 isolate requires endogenously expressed IFITM proteins for efficient infection. However, whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that out-competed the original strains and currently dominate the pandemic remained to be determined. Here, we demonstrate that depletion of endogenous IFITM2 expression almost entirely prevents the production of infectious Alpha, Beta, Gamma and Delta VOC SARS-CoV-2 virions in a human lung cell line. In comparison, silencing of IFITM1 had little impact, while knock-down of IFITM3 had intermediate effects on viral replication. Finally, an antibody targeting the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs including the currently dominant Delta variant are dependent on IFITM2 for efficient replication suggesting that IFITM proteins play a key role in viral transmission and pathogenicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA