Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 263: 122145, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098156

RESUMEN

To counteract the ongoing salinization of coastal aquifers, which poses a significant environmental and socioeconomic challenge to local communities, it is necessary to first understand the origin and mechanisms of this phenomenon. This study investigates the origins of salinity in the Volturno River lowland in Southern Italy and reveals that the primary source in the area is paleo-seawater entrapped within sediments that were subject to evapoconcentration processes. By systematically collecting sediment samples at variable depths and locations and extracting porewaters, a comprehensive understanding of the interplay between freshwater and saline water was gained, including complex patterns of vertical stratification of groundwater salinity. The study highlights the limitations of traditional methods that rely on salinity monitoring via integral depth sampling, particularly in capturing the vertical redox and salinity gradients characteristics of layered aquifer/aquitard systems. On the contrary, environmental tracers, like chloride and bromide, provide valuable insights into the sources of groundwater salinity, distinguishing between current seawater intrusion and other causes, such as paleo-seawater and return flow from drained agricultural land. Results suggest that the majority of salinity does not originate from modern seawater intrusion or recent evaporation. Instead, it can be attributed to paleo-seawater affected by evapoconcentration processes. This study has broader implications for the sustainable management of coastal aquifers and the safeguarding of freshwater resources. While our findings are specific to the Volturno River coastal area, the methodologies and insights here presented can be reproduced in every coastal region facing similar salinity challenges.


Asunto(s)
Sedimentos Geológicos , Agua Subterránea , Ríos , Salinidad , Italia , Monitoreo del Ambiente/métodos , Agua de Mar/química
2.
Sci Total Environ ; 905: 167058, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709072

RESUMEN

Groundwater salinization can be natural and anthropogenic in origin, although it often results from a combination of both, especially in low-lying coastal regions that are hydraulically controlled. This study proposes a method to assess the origin of salinity using environmental tracers in porewater, like Cl- and Br-, combined with depositional facies associations detected in sediment cores. Such integrated approach was tested in a target area south of the Venice Lagoon (Italy), where groundwater salinization is triggered by multiple mechanisms due to the complexity of the hydro-geomorphological environment. Batch tests were performed on sediment core samples from boreholes to quantify major anions and total inorganic N. Cl- and Br- porewater concentrations coupled with sedimentary facies association provided insights into the origin of groundwater salinity from a variety of sources, including past and present seawater intrusion, agricultural leaching, and evaporites. The strengths and limitations of the integrated approach are discussed to provide a pathway for improving water resource management and planning measures to prevent groundwater salinization in coastal areas.

3.
Sci Total Environ ; 898: 165558, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37459980

RESUMEN

Graphene production has dramatically increased in the last years and new ways to recycle this engineered material need to be investigated. To this purpose, a reactive model network was developed using PHREEQC-3 code to quantify the relevant biogeochemical reactions induced by graphene scraps' incorporation in a calcareous sandy soil. The numerical model was calibrated versus a complete dataset of column experiments in water saturated conditions using two different fertilizers, a synthetic NPK fertilizer and fertigation water produced in a wastewater treatment plant. Column experiments consisted of 50 cm columns filled with a mixture of graphene scraps (0.015 % dry weight) and soil in the first 10 cm, while the remaining 40 cm had only soil. The model performance was tested using classical statistical indices (R2, Modelling Efficiency, and Index of Agreement), resulting to be satisfactory. Besides, a simple sensitivity analysis via the perturbation of relevant parameters showed a low degree of uncertainty. The main outcome of this study was the quantification of the increased denitrification rate triggered by graphene incorporation into the soil. Moreover, graphene incorporation substantially increased soil CEC and DOC sorption capacity, demonstrating a good adsorption capacity for ammonium and organic compounds, thus decreasing nutrients leaching that represents a major concern related to agricultural practice. Indeed, Graphene incorporation increased by 40 % the CEC in the first 10 cm of the CSG_NPK column (2.50e-02 mol/L) respect to the CS_NPK column (1.75e-02 mol/L) and increased it by 150 % in the first 10 cm of the CSG_FW column (2.50e-02 mol/L) in comparison with the CS_FW column 1.00e-02 (mol/L). pH fluctuations were most likely due to the precipitation of Ca5(PO4)3OH, indeed the consumption of H+ ions could have triggered the pH lowering during the experiment. These results could be relevant for future graphene applications as a soil improver or as suitable material to enhance soil bioremediation in order to include graphene in a circular economy loop.

4.
Sci Total Environ ; 858(Pt 1): 159806, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349624

RESUMEN

Given the large amount of Graphene produced in the last years, there is the need to introduce this new material into a green and circular economy loop. In this study, for the first time, the fate of nutrients and heavy metals in a sandy Calcisol amended with Graphene was monitored and compared to other traditional improvers such as Compost, Zeolites, and Biochar. This was performed via saturated and unsaturated columns' experiments with two different fertilization regimes: one with NPK fertilizer and one with an innovative fertigation water (FW) produced from a pilot wastewater treatment plant. The breakthrough curves of each nutrient and heavy metal were analysed to understand the main processes occurring in saturated and unsaturated conditions, comparing the columns amended with the improvers versus the unamended Controls. Mass balances for each nutrient and heavy metal were developed to infer whether the different soil improvers were effective in minimizing leaching. Graphene, for most cases, behaved as the Control in nutrients' leaching for all the saturated and unsaturated experiments, both with NPK and FW. Biochar increased EC, K+, and pH of the leaching water, which could be an issue for the growth of some plants. Compost increased NO3- leaching in all the experiments. Zeolites showed the best N compounds retention, but great PO43- leaching in saturated conditions. Heavy metals leachates were analysed only for unsaturated columns (as more representative of field conditions) and found at concentrations well below the limits suggested by the U.S. Environmental Protection Agency. Overall, Graphene performed well in minimizing nutrients and heavy metals leaching, respect to classical improvers. This study is a starting point for field studies that will be critical to have a clear understanding of how Graphene behaves in the environment.


Asunto(s)
Grafito , Metales Pesados , Contaminantes del Suelo , Zeolitas , Suelo/química , Contaminantes del Suelo/análisis , Arena , Metales Pesados/análisis , Nutrientes/análisis , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA