Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253920

RESUMEN

The SARS-CoV-2 pandemic impact on nursing home (NH) residents prompted their prioritization for early vaccination. To fill the data gap for vaccine immunogenicity in NH residents, we examined antibody levels after BNT162b2 mRNA vaccine to spike, receptor binding domain (RBD) and for virus neutralization in 149 NH residents and 111 health care worker controls. SARS-CoV-2-naive NH residents mount antibody responses with nearly 4-fold lower median neutralization titers and half the anti-spike level compared to SARS-CoV-2-naive healthcare workers. By contrast, SARS-CoV-2-recovered vaccinated NH residents had neutralization, anti-spike and anti-RBD titers similar to SARS-CoV-2-recovered vaccinated healthcare workers. NH residents blunted antibody responses have important implications regarding the quality and durability of protection afforded by neoantigen vaccines. We urgently need better longitudinal evidence on vaccine effectiveness specific to NH resident populations to inform best practices for NH infection control measures, outbreak prevention and potential indication for a vaccine boost.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-415216

RESUMEN

Effective countermeasures are needed against emerging coronaviruses of pandemic potential, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Designing immunogens that elicit broadly neutralizing antibodies to conserved viral epitopes on the major surface glycoprotein, spike, such as the receptor binding domain (RBD) is one potential approach. Here, we report the generation of homotrimeric RBD immunogens from different sarbecoviruses using a stabilized, immune-silent trimerization tag. In mice, we find that a cocktail of these homotrimeric sarbecovirus RBDs elicits antibodies to conserved viral epitopes outside of the ACE2 receptor binding motif (RBM). Importantly, these responses neutralize all sarbecovirus components even in context of prior SARS-CoV-2 imprinting. We further show that a substantial fraction of the neutralizing antibodies elicited after vaccination in humans also engages non-RBM epitopes on the RBD. Collectively, our results suggest a strategy for eliciting broadly neutralizing responses leading to a pan-sarbecovirus vaccine. Author summaryImmunity to SARS-CoV-2 in the human population will be widespread due to natural infection and vaccination. However, another novel coronavirus will likely emerge in the future and may cause a subsequent pandemic. Humoral responses induced by SARS-CoV-2 infection and vaccination provide limited protection against even closely related coronaviruses. We show immunization with a cocktail of trimeric coronavirus receptor binding domains induces a neutralizing antibody response that is broadened to related coronaviruses with pandemic potential. Importantly, this broadening occurs in context of an initial imprinted SARS-CoV-2 spike immunization showing that preexisting immunity can be expanded to recognize other related coronaviruses. Our immunogens focused the serum antibody response to conserved epitopes on the receptor binding domain outside of the ACE2 receptor binding motif; this contrasts with current SARS-CoV-2 therapeutic antibodies, which predominantly target the receptor binding motif.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA