Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18967, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152172

RESUMEN

Recent sensor, communication, and computing technological advancements facilitate smart grid use. The heavy reliance on developed data and communication technology increases the exposure of smart grids to cyberattacks. Existing mitigation in the electricity grid focuses on protecting primary or redundant measurements. These approaches make certain assumptions regarding false data injection (FDI) attacks, which are inadequate and restrictive to cope with cyberattacks. The reliance on communication technology has emphasized the exposure of power systems to FDI assaults that can bypass the current bad data detection (BDD) mechanism. The current study on unobservable FDI attacks (FDIA) reveals the severe threat of secured system operation because these attacks can avoid the BDD method. Thus, a Data-driven learning-based approach helps detect unobservable FDIAs in distribution systems to mitigate these risks. This study presents a new Hybrid Metaheuristics-based Dimensionality Reduction with Deep Learning for FDIA (HMDR-DLFDIA) Detection technique for Enhanced Network Security. The primary objective of the HMDR-DLFDIA technique is to recognize and classify FDIA attacks in the distribution systems. In the HMDR-DLFDIA technique, the min-max scalar is primarily used for the data normalization process. Besides, a hybrid Harris Hawks optimizer with a sine cosine algorithm (hybrid HHO-SCA) is applied for feature selection. For FDIA detection, the HMDR-DLFDIA technique utilizes the stacked autoencoder (SAE) method. To improve the detection outcomes of the SAE model, the gazelle optimization algorithm (GOA) is exploited. A complete set of experiments was organized to highlight the supremacy of the HMDR-DLFDIA method. The comprehensive result analysis stated that the HMDR-DLFDIA technique performed better than existing DL models.

2.
Diagnostics (Basel) ; 13(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761233

RESUMEN

Evaluating and tracking the size of a wound is a crucial step in wound assessment. The measurement of various indicators on wounds over time plays a vital role in treating and managing crucial wounds. This article introduces the concept of utilizing mobile device-captured photographs to address this challenge. The research explores the application of digital technologies in the treatment of chronic wounds, offering tools to assist healthcare professionals in enhancing patient care and decision-making. Additionally, it investigates the use of deep learning (DL) algorithms along with the use of computer vision techniques to enhance the validation results of wounds. The proposed method involves tissue classification as well as visual recognition system. The wound's region of interest (RoI) is determined using superpixel techniques, enabling the calculation of its wounded zone. A classification model based on the Region Anchored CNN framework is employed to detect and differentiate wounds and classify their tissues. The outcome demonstrates that the suggested method of DL, with visual methodologies to detect the shape of a wound and measure its size, achieves exceptional results. By utilizing Resnet50, an accuracy of 0.85 percent is obtained, while the Tissue Classification CNN exhibits a Median Deviation Error of 2.91 and a precision range of 0.96%. These outcomes highlight the effectiveness of the methodology in real-world scenarios and its potential to enhance therapeutic treatments for patients with chronic wounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA