Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(23): e202403245, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578838

RESUMEN

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinement stepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5×107≤V≤1.3×108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98 %), supreme ethylene selectivity (98 %), and superior catalytic endurance (in excess of 100 hours).

2.
ACS Omega ; 5(25): 15028-15038, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637776

RESUMEN

Porous-activated carbon (PAC) materials have been playing a vital role in meeting the challenges of the ever-increasing demand for alternative clean and sustainable energy technologies. In the present scenario, a facile approach is suggested to produce hierarchical PAC at different activation temperatures in the range of 600 to 900 °C by using cow dung (CD) waste as a precursor, and H3PO4 is adopted as the nonconventional activating agent to obtain large surface area values. The as-prepared cow dung-based PAC (CDPAC) is graphitic in nature with mixed micro- and mesoporous textures. High-resolution scanning electron microscopy depicts the morphology of CDPAC as nanoporous structures with a uniform arrangement. High-resolution transmission electron microscopy reveals spherical carbon dense nanoparticles with dense tiny spherical carbon particles. N2 adsorption-desorption isotherms show a very high specific surface area of 2457 m2/g for the CDPAC 9 (CD 9) sample with a large pore volume of 1.965 cm3/g. Electrochemical measurements of the CD 9 sample show a good specific capacitance (C s) of 347 F/g at a lower scan rate (5 mV/s) with improved cyclic stability, which is run up to 5000 cycles at a low current density (0.5 A/g). Hence, we choose an activated carbon prepared at 900 °C to fabricate the modified electrode material. In this regard, a flexible type symmetric supercapacitor device was fabricated, and the electrochemical test results show a supercapacitance value (C s) of 208 F/g.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA