Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8(1): 514, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894113

RESUMEN

Coking leads to the deactivation of solid acid catalyst. This phenomenon is a ubiquitous problem in the modern petrochemical and energy transformation industries. Here, we show a method based on microwave cavity perturbation analysis for an effective examination of both the amount and the chemical composition of cokes formed over acid zeolite catalysts. The employed microwave cavity can rapidly and non-intrusively measure the catalytically coked zeolites with sample full body penetration. The overall coke amount is reflected by the obtained dielectric loss (ε″) value, where different coke compositions lead to dramatically different absorption efficiencies (ε″/cokes' wt%). The deeper-dehydrogenated coke compounds (e.g., polyaromatics) lead to an apparently higher ε″/wt% value thus can be effectively separated from lightly coked compounds. The measurement is based on the nature of coke formation during catalytic reactions, from saturated status (e.g., aliphatic) to graphitized status (e.g., polyaromatics), with more delocalized electrons obtained for enhanced Maxwell-Wagner polarization.Catalyst deactivation by coke deposition is a major drawback in industrial processes. Here, the authors show a non-intrusive microwave cavity perturbation technique as a powerful tool to determine the nature and extent of coke accumulation in industrially-relevant zeolite catalysts.

2.
Sci Rep ; 6: 35315, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27759014

RESUMEN

Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV's). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA