Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 13(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37891809

RESUMEN

Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1) improves motor learning in relatively simple motor tasks performed with the hand and arm. However, it is unknown if tDCS can improve motor learning in complex motor tasks involving whole-body coordination with significant endpoint accuracy requirements. The primary purpose was to determine the influence of tDCS on motor learning over multiple days in a complex over-hand throwing task. This study utilized a double-blind, randomized, SHAM-controlled, between-subjects experimental design. Forty-six young adults were allocated to either a tDCS group or a SHAM group and completed three experimental sessions on three consecutive days at the same time of day. Each experimental session was identical and consisted of overhand throwing trials to a target in a pre-test block, five practice blocks performed simultaneously with 20 min of tDCS, and a post-test block. Overhand throwing performance was quantified as the endpoint error. Transcranial magnetic stimulation was used to obtain motor-evoked potentials (MEPs) from the first dorsal interosseus muscle to quantify changes in M1 excitability due to tDCS. Endpoint error significantly decreased over the three days of practice in the tDCS group but not in the SHAM group. MEP amplitude significantly increased in the tDCS group, but the MEP increases were not associated with increases in motor learning. These findings indicate that tDCS applied over multiple days can improve motor learning in a complex motor tasks in healthy young adults.

2.
Hum Mov Sci ; 66: 241-248, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31078943

RESUMEN

Transcranial random noise stimulation (tRNS) is a brain stimulation technique that has been shown to increase motor performance in simple motor tasks. The purpose was to determine the influence of tRNS on motor skill acquisition and retention in a complex golf putting task. Thirty-four young adults were randomly assigned to a tRNS group or a SHAM stimulation group. Each subject completed a practice session followed by a retention session. In the practice session, subjects performed golf putting trials in a baseline test block, four practice blocks, and a post test block. Twenty-four hours later subjects completed the retention test block. The golf putting task involved performing putts to a small target located 3 m away. tRNS or SHAM was applied during the practice blocks concurrently with the golf putting task. tRNS was applied over the first dorsal interosseus muscle representation area of the motor cortex for 20 min at a current strength of 2 mA. Endpoint error and endpoint variance were reduced across the both the practice blocks and the test blocks, but these reductions were not different between groups. These findings suggest that an acute application of tRNS failed to enhance skill acquisition or retention in a golf putting task.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA