Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bull Volcanol ; 84(12): 100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345313

RESUMEN

Radar (SAR) satellites systematically acquire imagery that can be used for volcano monitoring, characterising magmatic systems and potentially forecasting eruptions on a global scale. However, exploiting the large dataset is limited by the need for manual inspection, meaning timely dissemination of information is challenging. Here we automatically process ~ 600,000 images of > 1000 volcanoes acquired by the Sentinel-1 satellite in a 5-year period (2015-2020) and use the dataset to demonstrate the applicability and limitations of machine learning for detecting deformation signals. Of the 16 volcanoes flagged most often, 5 experienced eruptions, 6 showed slow deformation, 2 had non-volcanic deformation and 3 had atmospheric artefacts. The detection threshold for the whole dataset is 5.9 cm, equivalent to a rate of 1.2 cm/year over the 5-year study period. We then use the large testing dataset to explore the effects of atmospheric conditions, land cover and signal characteristics on detectability and find that the performance of the machine learning algorithm is primarily limited by the quality of the available data, with poor coherence and slow signals being particularly challenging. The expanding dataset of systematically acquired, processed and flagged images will enable the quantitative analysis of volcanic monitoring signals on an unprecedented scale, but tailored processing will be needed for routine monitoring applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s00445-022-01608-x.

2.
Nat Commun ; 10(1): 2526, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175308

RESUMEN

The strong tidal triggering of mid-ocean ridge earthquakes has remained unexplained because the earthquakes occur preferentially during low tide, when normal faulting earthquakes should be inhibited. Using Axial Volcano on the Juan de Fuca ridge as an example, we show that the axial magma chamber inflates/deflates in response to tidal stresses, producing Coulomb stresses on the faults that are opposite in sign to those produced by the tides. When the magma chamber's bulk modulus is sufficiently low, the phase of tidal triggering is inverted. We find that the stress dependence of seismicity rate conforms to triggering theory over the entire tidal stress range. There is no triggering stress threshold and stress shadowing is just a continuous function of stress decrease. We find the viscous friction parameter A to be an order of magnitude smaller than laboratory measurements. The high tidal sensitivity at Axial Volcano results from the shallow earthquake depths.

3.
Nat Commun ; 10(1): 748, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765693

RESUMEN

Forecasting explosive eruptions relies on using monitoring data to interpret the patterns and timescales of magma transport and mixing. In September 2017, a distal seismic swarm triggered the evacuation of around 140,000 people from Agung volcano, Bali. From satellite imagery and 3D numerical models, we show that seismicity was associated with a deep, sub-vertical magma intrusion between Agung and its neighbour Batur. This, combined with observations of the 1963 eruption which caused more than thousand fatalities, suggests a vertically and laterally interconnected system experiencing recurring magma mixing. The geometry of the 2017 dyke is consistent with transport from a deep mafic source to a shallow andesitic reservoir controlled by stresses induced by the topographic load, but not the regional tectonics. The ongoing interactions between Agung and Batur have important implications for interpretation of distal seismicity, the links between closely spaced arc volcanoes, and the potential for cascading hazards.

4.
Philos Trans A Math Phys Eng Sci ; 368(1919): 2519-34, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20403840

RESUMEN

Pressure influences both magma production and the failure of magma chambers. Changes in pressure interact with the local tectonic settings and can affect magmatic activity. Present-day reduction in ice load on subglacial volcanoes due to global warming is modifying pressure conditions in magmatic systems. The large pulse in volcanic production at the end of the last glaciation in Iceland suggests a link between unloading and volcanism, and models of that process can help to evaluate future scenarios. A viscoelastic model of glacio-isostatic adjustment that considers melt generation demonstrates how surface unloading may lead to a pulse in magmatic activity. Iceland's ice caps have been thinning since 1890 and glacial rebound at rates exceeding 20 mm yr(-1) is ongoing. Modelling predicts a significant amount of 'additional' magma generation under Iceland due to ice retreat. The unloading also influences stress conditions in shallow magma chambers, modifying their failure conditions in a manner that depends critically on ice retreat, the shape and depth of magma chambers as well as the compressibility of the magma. An annual cycle of land elevation in Iceland, due to seasonal variation of ice mass, indicates an annual modulation of failure conditions in subglacial magma chambers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA