Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 17(6): e0011407, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276217

RESUMEN

Beginning December 2016, sylvatic yellow fever (YF) outbreaks spread into southeastern Brazil, and Minas Gerais state experienced two sylvatic YF waves (2017 and 2018). Following these massive YF waves, we screened 187 free-living non-human primate (NHPs) carcasses collected throughout the state between January 2019 and June 2021 for YF virus (YFV) using RTqPCR. One sample belonging to a Callithrix, collected in June 2020, was positive for YFV. The viral strain belonged to the same lineage associated with 2017-2018 outbreaks, showing the continued enzootic circulation of YFV in the state. Next, using data from 781 NHPs carcasses collected in 2017-18, we used generalized additive mixed models (GAMMs) to identify the spatiotemporal and host-level drivers of YFV infection and intensity (an estimation of genomic viral load in the liver of infected NHP). Our GAMMs explained 65% and 68% of variation in virus infection and intensity, respectively, and uncovered strong temporal and spatial patterns for YFV infection and intensity. NHP infection was higher in the eastern part of Minas Gerais state, where 2017-2018 outbreaks affecting humans and NHPs were concentrated. The odds of YFV infection were significantly lower in NHPs from urban areas than from urban-rural or rural areas, while infection intensity was significantly lower in NHPs from urban areas or the urban-rural interface relative to rural areas. Both YFV infection and intensity were higher during the warm/rainy season compared to the cold/dry season. The higher YFV intensity in NHPs in warm/rainy periods could be a result of higher exposure to vectors and/or higher virus titers in vectors during this time resulting in the delivery of a higher virus dose and higher viral replication levels within NHPs. Further studies are needed to better test this hypothesis and further compare the dynamics of YFV enzootic cycles between different seasons.


Asunto(s)
Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Humanos , Virus de la Fiebre Amarilla/genética , Brasil/epidemiología , Brotes de Enfermedades , Callithrix
2.
Acta Trop ; 225: 106203, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34688630

RESUMEN

Hemoplasmas have already been detected in bats in the United States of America, Spain, Australia, Chile, Brazil, Peru, Belize, Nigeria, Costa Rica, Germany, Switzerland and New Caledonia. The recent detection of hemoplasmas closely related to Mycoplasma haematohominis, an agent causing disease in humans, emphasizes the need for additional studies on the diversity of hemoplasmas in bats. The present work aimed to investigate the occurrence and assess the phylogenetic positioning and genetic diversity of hemoplasmas in bats and associated ectoparasites sampled in central-western Brazil. Overall, 43% (58/135) sampled bats and 1.56% (1/64) bat flies (Megistopoda aranea) were positive for hemoplasmas, however, twenty-four and two hemoplasma sequences were obtained from PCR assays targeting 16S and 23S rRNA genes, respectively, since the majority of the obtained amplicons showed faint bands in agarose gel electrophoresis. The obtained 16S rRNA sequences showed to be broadly distributed along the phylogenetic tree, albeit positioned within the 'Haemofelis group' and clustering with other bat-associated hemoplasmas. Twelve 16S rRNA hemoplasma genotypes were found among the 24 obtained sequences. When compared to other bat-related hemoplasmas sequences retrieved from the Genbank, 52 genotypes were found. The two 23S rRNA sequences obtained were positioned as a sister clade to "Candidatus Mycoplasma haematohydrochaerus", M. haemofelis and M. haemocanis. High genetic diversity was found among 16S rRNA hemoplasma sequences detected in non-hematophagous bats from central-western Brazil and previously detected in other regions of the world. Even though the genotype analysis showed that hemoplasmas from the same genus tend to group together, the results from the unipartite and bipartite analyses did not robustly support the hypothesis. Further studies addressing the specificity of hemoplasma genotypes according to bat species and genera should be performed.


Asunto(s)
Infecciones por Mycoplasma , Brasil , ADN Bacteriano/genética , Genotipo , Humanos , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA