Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(16): 7318-7328, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017120

RESUMEN

Two-dimensional heterostructures have recently gained broad interest due to potential applications in optoelectronic devices. Their reduced dimensionality leads to novel physical effects beyond conventional bulk electronics. However, the optical properties of the 2D lateral heterojunctions have not been completely characterized due to the limited spatial resolution, requiring nano-optical techniques beyond the diffraction limit. Here, we investigate lateral monolayer WS2-MoS2 heterostructures in a plasmonic Au-Au tip-substrate picocavity using subdiffraction limited tip-enhanced photoluminescence (TEPL) spectroscopy with sub-nanometer tip-sample distance control. We observed more than 3 orders of magnitude PL enhancement by placing a plasmonic Au-coated tip at the resonantly excited heterojunction. We developed a theoretical model of the quantum plasmonic 2D heterojunction, where tunneling of hot electrons between the Au tip and MoS2 leads to the quenching of the MoS2 PL, while simultaneously increasing the WS2 PL, in contrast to the non-resonant reverse transfer. Our simulations show good agreement with the experiments, revealing a range of parameters and enhancement factors corresponding to the switching between the classical and quantum regimes. The controllable photoresponse of the 2D heterojunction can be used in novel nanodevices.

2.
ACS Appl Mater Interfaces ; 14(8): 11006-11015, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35170302

RESUMEN

Two-dimensional (2D) semiconducting materials have promising applications in flexible optoelectronics, nanophotonics, and sensing based on the broad tunability of their optical and electronic properties. 2D nanobubbles form exciton funnels due to localized strain that can be used as local emitters for information processing. Their nanoscale optical characterization requires the use of near-field scanning probe microscopy (SPM). However, previous near-field studies of 2D materials were performed on SiO2/Si and metallic substrates using the plasmonic gap mode to increase the signal-to-noise ratio. Another challenge is the deterministic control of bubble size and location. We addressed these challenges by investigating the photoluminescence (PL) signals of freestanding monolayer lateral WSe2-MoSe2 heterostructures under the influence of strain exerted by a plasmonic SPM tip. For first time, we performed tip-enhanced PL imaging of freestanding 2D materials and studied the competition between the PL enhancement mechanisms by nanoindentation as a function of the tip-sample distance. We observed the tunability of PL as a function of bubble size, which opens new possibilities to design optoelectronic nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA