Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37960002

RESUMEN

Bio-solids (biological sludge) from wastewater treatment plants are a significant source of the emission of microplastics (MPs) into the environment. Weakening the structure of MPs before they enter the environment may accelerate their degradation and reduce the environmental exposure time. Therefore, we studied the effect of UV-A and UV-C, applied at 70 °C, on three types of MPs, polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET), that are commonly found in sewage sludge, using three shapes (fibers, lines, granules). The MPs were exposed to UV radiation in bio-solid suspensions, and to air and water as control. The structural changes in and degradation of the MPs were investigated using Attenuated Total Reflectance-Fourier Transform Infrared Spectrometry (ATR-FTIR) and surface morphology was performed with SEM analysis. UV exposure led to the emergence of carbonyl and hydroxyl groups in all of the PP samples. In PE and PET, these groups were formed only in the bio-solid suspensions. The presence of carbonyl and hydroxyl groups increased with an increasing exposure time. Overall, UV radiation had the greatest impact on the MPs in the bio-solids suspension. Due to the surface-to-volume ratio of the tested samples, which influences the degradation rate, the fibers were more degraded than the other two plastic shapes. UV-A was slightly more effective at degrading the MPs than UV-C. These findings show that ultraviolet radiation in combination with an elevated temperature affects the structure of polymers in wastewater bio-solids, which can accelerate their degradation.

2.
Chemosphere ; 278: 130471, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33839392

RESUMEN

Wastewater treatment plants (WWTPs) are important routes for releasing microplastics into the environment, with the produced sludge acting as a recipient of microplastics from wastewater. There is little information on the impact of sludge processes on the number of microplastics in sludge. In this study, the presence of microplastics in sludge produced by the Sari WWTP in northern Iran was investigated. Samples were taken in 3 replications and microplastics larger than 37 µm were extracted. The sludge from primary settling tank, clarifier, after sludge thickener and after aerobic digester, and after dewatering contained 214, 206, 200, 238, and 129 microplastics/g dry weight, respectively. According to the amount of sludge produced for each unit, this equals 280, 362, 599, 601, and 276 million microplastics/day, respectively, of which more than 85% were fibers. The numbers of microplastics in the sludge from the output of the sludge thickener and the aerobic digester did not significantly differ. However, their numbers decreased by more than 50% after dewatering, probably due to the destruction of flocs in the digestive process and the release of attached microplastics, which are returned into the wastewater treatment process with the rejected water. Polyester and polyethylene were the predominant types of fibers and particles, respectively. Given the annual amount of sludge produced, more than 100 billion microplastics enter the environment per year. Wastewater sludge, therefore, is an important source for the emission of microplastics, especially fibers, to the environment, warranting further evaluation of the associated environmental hazards.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Monitoreo del Ambiente , Irán , Microplásticos , Plásticos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 261: 128179, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33113649

RESUMEN

Understanding how wastewater treatment plants (WWTPs) process microplastics (MPs) will help informing management practices to reduce MP emissions to the environment. We show that composite 24 h samples taken at three replications from the outflow of the grit chamber, primary settling tank and clarifier of the WWTP of Sari City, on the southern coast of the Caspian Sea, contained 12667 ± 668, 3514 ± 543 and 423 ± 44.9 MP/m3, respectively. Fibers accounted for 94.9%, 89.9% and 77.5% of the total number of MPs, respectively. The MP removal efficiency was 96.7%. MP shape (fiber, particle), size and structure were the most important factors determining their removal in different steps of the wastewater treatment process. The structure of microfibers (polyester, acrylic and nylon) and the consequent higher density than water explained their high removal (72.3%) in the primary settling tank. However, size was more important in microparticle removal with particles ≥500 µm being removed in the primary settling tank and <500 µm in the clarifier unit. The smallest particles (37-300 µm) showed the lowest removal efficiency. The predominant types of fibers and particles were polyester and polyethylene, respectively, which are likely to originate from the washing of synthetic textiles and from microbeads in toothpaste and cosmetics. Despite the efficiency of the Sari WWTP in removing MPs, it remains a major emission source of MPs to the Caspian Sea due to its high daily discharge load.


Asunto(s)
Microplásticos/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Mar Caspio , Ciudades , Irán , Microplásticos/química , Nylons/química , Nylons/aislamiento & purificación , Poliésteres/química , Poliésteres/aislamiento & purificación , Polietileno/química , Polietileno/aislamiento & purificación , Textiles , Aguas Residuales/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA