Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7704, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231978

RESUMEN

Emergent superconductivity at the LaAlO3/KTaO3 interfaces exhibits a mysterious dependence on the KTaO3 crystallographic orientations. Here by soft X-ray angle-resolved photoemission spectroscopy, we directly resolve the electronic structure of the LaAlO3/KTaO3 interfacial superconductors and the non-superconducting counterpart. We find that the mobile electrons that contribute to the interfacial superconductivity show strong k⊥ dispersion. Comparing the superconducting and non-superconducting interfaces, the quasi-three-dimensional electron gas with over 5.5 nm spatial distribution ubiquitously exists and shows similar orbital occupations. The signature of electron-phonon coupling is observed and intriguingly dependent on the interfacial orientations. Remarkably, the stronger electron-phonon coupling signature correlates with the higher superconducting transition temperature. Our observations help scrutinize the theories on the orientation-dependent superconductivity and offer a plausible and straightforward explanation. The interfacial orientation effect that can modify the electron-phonon coupling strength over several nanometers sheds light on the applications of oxide interfaces in general.

2.
Adv Mater ; 36(15): e2309217, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38245856

RESUMEN

Oxide electronics provide the key concepts and materials for enhancing silicon-based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers-either negatively (n) charged electrons or positively (p) charged holes. Here, direct evidence for individually emerging n- or p-type 2D band dispersions in STO-based heterostructures is provided using resonant photoelectron spectroscopy. The key to tuning the carrier character is the oxidation state of an adjacent Fe-based interface layer: For Fe and FeO, hole bands emerge in the empty bandgap region of STO due to hybridization of Ti- and Fe- derived states across the interface, while for Fe3O4 overlayers, an 2D electron system is formed. Unexpected oxygen vacancy characteristics arise for the hole-type interfaces, which as of yet had been exclusively assigned to the emergence of 2DESs. In general, this finding opens up the possibility to straightforwardly switch the type of conductivity at STO interfaces by the oxidation state of a redox overlayer. This will extend the spectrum of phenomena in oxide electronics, including the realization of combined n/p-type all-oxide transistors or logic gates.

3.
Commun Phys ; 6(1): 223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665398

RESUMEN

The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn5 and other Ce-based heavy fermion materials, depends strongly on the efficiency with which f electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce3+ (4f1, J = 5/2) with Sm3+ (4f5, J = 5/2), we show that a combination of the crystal electric field and on-site Coulomb repulsion causes SmCoIn5 to exhibit a Γ7 ground state similar to CeCoIn5 with multiple f electrons. We show that with this single-ion ground state, SmCoIn5 exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of f holes below a temperature scale set by the crystal field, Tv ≈ 60 K. Our result provides evidence that in the case of many f electrons, the crystal field remains the dominant tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of "115" materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA