Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34829553

RESUMEN

Disruptions in brain energy metabolism, oxidative damage, and neuroinflammation are commonly seen in traumatic brain injury (TBI). Microglial activation is the hallmark of neuroinflammation. After brain injury, microglia also act as a double-edged sword with distinctive phenotypic changes. Therefore, therapeutic applications to potentiate microglia towards pro-inflammatory response following brain injury have become the focus of attention in recent years. Here, in the current study, we investigated the hypothesis that 17ß-estradiol could rescue the mouse brain against apoptotic cell death and neurodegeneration by suppressing deleterious proinflammatory response probably by abrogating metabolic stress and oxidative damage after brain injury. Male C57BL/6N mice were used to establish a cortical stab wound injury (SWI) model. Immediately after brain injury, the mice were treated with 17ß-estradiol (10 mg/kg, once every day via i.p. injection) for one week. Immunoblotting and immunohistochemical analysis was performed to examine the cortical and hippocampal brain regions. For the evaluation of reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG), we used specific kits. Our findings revealed that 17ß-estradiol treatment significantly alleviated SWI-induced energy dyshomeostasis and oxidative stress by increasing the activity of phospho-AMPK (Thr172) and by regulating the expression of an antioxidant gene (Nrf2) and cytoprotective enzymes (HO-1 and GSH) to mitigate ROS. Importantly, 17ß-estradiol treatment downregulated gliosis and proinflammatory markers (iNOS and CD64) while significantly augmenting an anti-inflammatory response as evidenced by the robust expression of TGF-ß and IGF-1 after brain injury. The treatment with 17ß-estradiol also reduced inflammatory mediators (Tnf-α, IL-1ß, and COX-2) in the injured mouse. Moreover, 17ß-estradiol administration rescued p53-associated apoptotic cell death in the SWI model by regulating the expression of Bcl-2 family proteins (Bax and Bcl-2) and caspase-3 activation. Finally, SWI + 17ß-estradiol-treated mice illustrated reduced brain lesion volume and enhanced neurotrophic effect and the expression of synaptic proteins. These findings suggest that 17ß-estradiol is an effective therapy against the brain secondary injury-induced pathological cascade following trauma, although further studies may be conducted to explore the exact mechanisms.

2.
Cells ; 10(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571925

RESUMEN

Alpha-Linolenic acid (ALA), an omega-3 polyunsaturated fatty acid, is extracted from plant sources and has been shown to be one of the anti-inflammatory and antioxidant agents. Herein, we revealed the molecular mechanism underlying the anti-inflammatory and antioxidant potential of (ALA), against cadmium in the adult mouse brain. We evaluated the neuroprotective effect of ALA (60 mg/kg per oral for 6 weeks) against CdCl2 (5 mg/kg)-induced oxidative stress, neuroinflammation, and neuronal apoptosis. According to our findings, ALA markedly reduced ROS production and nitric oxide synthase 2 (NOS2) and enhanced the expression of nuclear factor-2 erythroid-2 (Nrf-2) and heme oxygenase-1 (HO-1) in mice treated with CdCl2. Most importantly, the molecular docking study revealed that ALA allosterically decreases the overexpression of c-Jun N-terminal kinase (JNK) activity and inhibited the detrimental effect against CdCl2. Moreover, ALA suppressed CdCl2-induced glial fibrillary acidic protein (GFAP), nuclear factor-kappa b (NF-κB), and interleukin-1ß (IL-1ß) in the mouse brain. Further, we also checked the pro- and anti-apoptotic proteins markers such as Bax, Bcl-2, and caspase-3, which were regulated in the cortex of ALA co-treated mouse brain. Overall, our study suggests that oral administration of ALA can impede oxidative stress, neuroinflammation, and increase neuronal apoptosis in the cortex of Cd-injected mouse brain.


Asunto(s)
Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Animales , Antioxidantes/farmacología , Apoptosis , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
3.
Front Aging Neurosci ; 13: 650930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248598

RESUMEN

Cadmium (Cd) is an environmental contaminant, which is a potential risk factor in the progression of aging-associated neurodegenerative diseases. Herein, we have assessed the effects of chronic administration of Cd on cellular oxidative stress and its associated Alzheimer's disease (AD) pathologies in animal models. Two groups of mice were used, one group administered with saline and the other with Cd (1 mg/kg/day; intraperitoneally) for 3 months. After behavioral studies, molecular/biochemical (Immunoblotting, ELISAs, ROS, LPO, and GSH assays) and morphological analyses were performed. We observed an exacerbation of memory and synaptic deficits in chronic Cd-injected mice. Subacute and chronic Cd escalated reactive oxygen species (ROS), suppressed the master antioxidant enzymes, e.g., nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1, and evoked the stress kinase phospho-c-Jun N-terminal kinase 1 signaling pathways, which may escalate AD pathologies possibly associated with amyloidogenic processes. These findings suggest the regulation of oxidative stress/ROS and its associated amyloid beta pathologies for targeting the Cd-exacerbated AD pathogenesis. In addition, these preclinical animal studies represent a paradigm for epidemiological studies of the human population exposed to chronic and subacute administration of Cd, suggesting avoiding environmental contaminants.

4.
Biomedicines ; 9(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430188

RESUMEN

Brain injury is a significant risk factor for chronic gliosis and neurodegenerative diseases. Currently, no treatment is available for neuroinflammation caused by the action of glial cells following brain injury. In this study, we investigated the quinpirole-mediated activation of dopamine D2 receptors (D2R) in a mouse model of traumatic brain injury (TBI). We also investigated the neuroprotective effects of quinpirole (a D2R agonist) against glial cell-induced neuroinflammation secondary to TBI in adult mice. After the brain injury, we injected quinpirole into the TBI mice at a dose of 1 mg/kg daily intraperitoneally for 7 days. Our results showed suppression of D2R expression and deregulation of downstream signaling molecules in ipsilateral cortex and striatum after TBI on day 7. Quinpirole administration regulated D2R expression and significantly reduced glial cell-induced neuroinflammation via the D2R/Akt/glycogen synthase kinase 3 beta (GSK3-ß) signaling pathway after TBI. Quinpirole treatment concomitantly attenuated increase in glial cells, neuronal apoptosis, synaptic dysfunction, and regulated proteins associated with the blood-brain barrier, together with the recovery of lesion volume in the TBI mouse model. Additionally, our in vitro results confirmed that quinpirole reversed the microglial condition media complex-mediated deleterious effects and regulated D2R levels in HT22 cells. This study showed that quinpirole administration after TBI reduced secondary brain injury-induced glial cell activation and neuroinflammation via regulation of the D2R/Akt/GSK3-ß signaling pathways. Our study suggests that quinpirole may be a safe therapeutic agent against TBI-induced neurodegeneration.

5.
Oxid Med Cell Longev ; 2020: 9523758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33274012

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder typified by several neuropathological features including amyloid-beta (Aß) plaque and neurofibrillary tangles (NFTs). Cholesterol retention and oxidative stress (OS) are the major contributors of elevated ß- and γ-secretase activities, leading to excessive Aß deposition, signifying the importance of altered cholesterol homeostasis and OS in the progression of Aß-mediated neurodegeneration and cognitive deficit. However, the effect of Aß on cholesterol metabolism is lesser-known. In this study, we evaluated the effect of quinovic acid (QA; 50 mg/kg body weight, i.p.) against the intracerebroventricular (i.c.v.) injection of Aß (1-42)-induced cholesterol dyshomeostasis, oxidative stress, and neurodegeneration in the cortex and hippocampal brain regions of wild-type male C57BL/6J mice. Our results indicated that Aß (1-42)-treated mice have increased Aß oligomer formation along with increased ß-secretase expression. The enhanced amyloidogenic pathway in Aß (1-42)-treated mice intensified brain cholesterol accumulation due to increased expressions of p53 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme. Importantly, we further confirmed the p53-mediated HMGCR axis activation by using pifithrin-α (PFT) in SH-SY5Y cells. Furthermore, the augmented brain cholesterol levels were also associated with increased OS. However, the QA administration to Aß (1-42)-injected mice significantly ameliorated the Aß burden, p53 expression, and cholesterol accumulation by deterring the oxidative stress through upregulating the Nrf2/HO-1 pathway. Moreover, the QA downregulated gliosis, neuroinflammatory mediators (p-NF-κB and IL-1ß), and the expression of mitochondrial apoptotic markers (Bax, cleaved caspase-3, and cytochrome c). QA treatment also reversed the deregulated synaptic markers (PSD-95 and synaptophysin) and improved spatial learning and memory behaviors in the Aß-treated mouse brains. These results suggest that Aß (1-42) induces its acute detrimental effects on cognitive functions probably by increasing brain cholesterol levels through a possible activation of the p53/HMGCR axis. However, QA treatment reduces the cholesterol-induced oxidative stress, neuroinflammation, and neurodegeneration, leading to the restoration of cognitive deficit after Aß (1-42) i.c.v. injection in mice.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Colesterol/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos , Triterpenos/farmacología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad
6.
J Neuroinflammation ; 17(1): 303, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059700

RESUMEN

BACKGROUND: Glycine is the smallest nonessential amino acid and has previously unrecognized neurotherapeutic effects. In this study, we examined the mechanism underlying the neuroprotective effect of glycine (Gly) against neuroapoptosis, neuroinflammation, synaptic dysfunction, and memory impairment resulting from D-galactose-induced elevation of reactive oxygen species (ROS) during the onset of neurodegeneration in the brains of C57BL/6N mice. METHODS: After in vivo administration of D-galactose (D-gal; 100 mg/kg/day; intraperitoneally (i/p); for 60 days) alone or in combination with glycine (1 g/kg/day in saline solution; subcutaneously; for 60 days), all of the mice were sacrificed for further biochemical (ROS/lipid peroxidation (LPO) assay, Western blotting, and immunohistochemistry) after behavioral analyses. An in vitro study, in which mouse hippocampal neuronal HT22 cells were treated with or without a JNK-specific inhibitor (SP600125), and molecular docking analysis were used to confirm the underlying molecular mechanism and explore the related signaling pathway prior to molecular and histological analyses. RESULTS: Our findings indicated that glycine (an amino acid) inhibited D-gal-induced oxidative stress and significantly upregulated the expression and immunoreactivity of antioxidant proteins (Nrf2 and HO-1) that had been suppressed in the mouse brain. Both the in vitro and in vivo results indicated that D-gal induced oxidative stress-mediated neurodegeneration primarily by upregulating phospho-c-Jun N-terminal kinase (p-JNK) levels. However, D-gal + Gly cotreatment reversed the neurotoxic effects of D-gal by downregulating p-JNK levels, which had been elevated by D-gal. We also found that Gly reversed D-gal-induced neuroapoptosis by significantly reducing the protein expression levels of proapoptotic markers (Bax, cytochrome c, cleaved caspase-3, and cleaved PARP-1) and increasing the protein expression level of the antiapoptotic protein Bcl-2. Both the molecular docking approach and the in vitro study (in which the neuronal HT22 cells were treated with or without a p-JNK-specific inhibitor (SP600125)) further verified our in vivo findings that Gly bound to the p-JNK protein and inhibited its function and the JNK-mediated apoptotic pathway in the mouse brain and HT22 cells. Moreover, the addition of Gly alleviated D-gal-mediated neuroinflammation by inhibiting gliosis via attenuation of astrocytosis (GFAP) and microgliosis (Iba-1) in addition to reducing the protein expression levels of various inflammatory cytokines (IL-1ßeta and TNFα). Finally, the addition of Gly reversed D-gal-induced synaptic dysfunction by upregulating the expression of memory-related presynaptic protein markers (synaptophysin (SYP), syntaxin (Syn), and a postsynaptic density protein (PSD95)) and markedly improved behavioral measures of cognitive deficits in D-gal-treated mice. CONCLUSION: Our findings demonstrate that Gly-mediated deactivation of the JNK signaling pathway underlies the neuroprotective effect of Gly, which reverses D-gal-induced oxidative stress, apoptotic neurodegeneration, neuroinflammation, synaptic dysfunction, and memory impairment. Therefore, we suggest that Gly (an amino acid) is a safe and promising neurotherapeutic candidate that might be used for age-related neurodegenerative diseases.


Asunto(s)
Galactosa/toxicidad , Glicina/uso terapéutico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Trastornos de la Memoria/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuroprotección/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Glicina/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/prevención & control , Neuroprotección/fisiología
7.
Biomedicines ; 8(10)2020 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993092

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that represents 60­70% of all dementia cases. AD is characterized by the formation and accumulation of amyloid-beta (Aß) plaques, neurofibrillary tangles, and neuronal cell loss. Further accumulation of Aß in the brain induces oxidative stress, neuroinflammation, and synaptic and memory dysfunction. In this study, we investigated the antioxidant and neuroprotective effects of the natural triterpenoid lupeol in the Aß1-42 mouse model of AD. An Intracerebroventricular injection (i.c.v.) of Aß (3 µL/5 min/mouse) into the brain of a mouse increased the reactive oxygen species (ROS) levels, neuroinflammation, and memory and cognitive dysfunction. The oral administration of lupeol at a dose of 50 mg/kg for two weeks significantly decreased the oxidative stress, neuroinflammation, and memory impairments. Lupeol decreased the oxidative stress via the activation of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) in the brain of adult mice. Moreover, lupeol treatment prevented neuroinflammation by suppressing activated glial cells and inflammatory mediators. Additionally, lupeol treatment significantly decreased the accumulation of Aß and beta-secretase-1 (BACE-1) expression and enhanced the memory and cognitive function in the Aß-mouse model of AD. To the best of our knowledge, this is the first study to investigate the anti-oxidative and neuroprotective effects of lupeol against Aß1-42-induced neurotoxicity. Our findings suggest that lupeol could serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD.

8.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396372

RESUMEN

The receptor for advanced glycation end products (RAGE), a pattern recognition receptor signaling event, has been associated with several human illnesses, including neurodegenerative diseases, particularly in Alzheimer's disease (AD). Vanillic acid (V.A), a flavoring agent, is a benzoic acid derivative having a broad range of biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. However, the underlying molecular mechanisms of V.A in exerting neuroprotection are not well investigated. The present study aims to explore the neuroprotective effects of V.A against lipopolysaccharides (LPS)-induced neuroinflammation, amyloidogenesis, synaptic/memory dysfunction, and neurodegeneration in mice brain. Behavioral tests and biochemical and immunofluorescence assays were applied. Our results indicated increased expression of RAGE and its downstream phospho-c-Jun n-terminal kinase (p-JNK) in the LPS-alone treated group, which was significantly reduced in the V.A + LPS co-treated group. We also found that systemic administration of LPS-injection induced glial cells (microglia and astrocytes) activation and significantly increased expression level of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB) and secretion of proinflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1 ß (IL1-ß), and cyclooxygenase (COX-2). However, V.A + LPS co-treatment significantly inhibited the LPS-induced activation of glial cells and neuroinflammatory mediators. Moreover, we also noted that V.A treatment significantly attenuated LPS-induced increases in the expression of AD markers, such as ß-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) and amyloid-ß (Aß). Furthermore, V.A treatment significantly reversed LPS-induced synaptic loss via enhancing the expression level of pre- and post-synaptic markers (PSD-95 and SYP), and improved memory performance in LPS-alone treated group. Taken together; we suggest that neuroprotective effects of V.A against LPS-induced neurotoxicity might be via inhibition of LPS/RAGE mediated JNK signaling pathway; and encourage future studies that V.A would be a potential neuroprotective and neurotherapeutic candidate in various neurological disorders.


Asunto(s)
Encéfalo/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Gliosis/tratamiento farmacológico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/toxicidad , Fármacos Neuroprotectores/farmacología , Ácido Vanílico/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Gliosis/inducido químicamente , Gliosis/metabolismo , Gliosis/patología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Cells ; 8(7)2019 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31330909

RESUMEN

Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5'AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Melatonina/uso terapéutico , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Péptidos beta-Amiloides/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cognición , Masculino , Melatonina/farmacología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo
10.
J Clin Med ; 8(5)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137734

RESUMEN

: Mechanistically, neurotoxic insults provoke Ca2+-mediated calpain activation, which cleaves the cytoplasmic region of membrane-embedded p35 and produces its truncated form p25. Upon physical interaction, cyclin-dependent kinase 5 (Cdk5) and p25 forms hyperactivated Cdk5/p25 complex and causes severe neuropathological aberrations including hyperphosphorylated tau-mediated neurofibrillary tangles formation, Alzheimer's symptoms, and neuronal death. Therefore, the inhibition of Cdk5/p25 complex may relieve p-tau-mediated Alzheimer's pathology. Herein, computational simulations have identified pyrrolidine-2,3-dione derivatives as novel inhibitors of Cdk5/p25 complex. A ligand-based pharmacophore was designed and employed as 3D query to retrieve drug-like molecules from chemical databases. By molecular docking, drug-like molecules obtaining dock score > 67.67 (Goldcore of the reference compound) were identified. Molecular dynamics simulation and binding free energy calculation retrieved four pyrrolidine-2,3-dione derivatives as novel candidate inhibitors of Cdk5/p25. The root means square deviation of Cdk5/p25 in complex with candidate inhibitors obtained an average value of ~2.15 Å during the 30 ns simulation period. Molecular interactions analysis suggested that each inhibitor occupied the ATP-binding site of Cdk5/p25 and formed stable interactions. Finally, the binding free energy estimation suggested that each inhibitor had lowest binding energy than the reference compound (-113.10 kJ/mol) to recapitulate their strong binding with Cdk5/p25. Overall, these inhibitors could mitigate tau-mediated Alzheimer's phenotype.

11.
J Clin Med ; 8(2)2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813383

RESUMEN

Brain injuries are a serious global health issue and are the leading cause of neurodegeneration. To date, there is no proper cure and treatment for brain-injury-induced neuropathological conditions because of a lack of sufficient knowledge and the failure to develop a drug due to the multi-pathological conditions in the brain. Herein, we explored the neurotherapeutic effects of Nicotinamide (NAM), against brain injury-induced neurodegeneration and behavioral problems. Treating injured mouse brains with NAM, for 7 days, significantly ameliorated several pathological events. Interestingly, NAM treatment significantly inhibited the injury-induced activation of receptor for advanced glycation end-products (RAGE), c-Jun N-terminal kinases (JNK), and neuroinflammatory mediators, such as NF-κB, TNF-α, IL-1ß, and NOS2 in the brain, and it also regulated the levels of apoptotic markers, including Bax, caspase-3, and Bcl-2. Furthermore, treatment using NAM in TBI mice, significantly reversed synaptic protein loss and improved memory impairments and behavioral outcomes. Our findings suggested that NAM treatment reduced injury-induced secondary neurodegenerative pathology by modulating RAGE/JNK/NF-κB signaling in mice. Therefore, we recommend that NAM would be a safe and efficient therapeutic agent against brain-injury-induced neurodegeneration.

12.
J Neuroimmune Pharmacol ; 14(2): 278-294, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30478761

RESUMEN

Cognitive decline and memory impairment induced by oxidative brain damage are the critical pathological hallmarks of Alzheimer's disease (AD). Based on the potential neuroprotective effects of melatonin, we here explored the possible underlying mechanisms of the protective effect of melatonin against scopolamine-induced oxidative stress-mediated c-Jun N-terminal kinase (JNK) activation, which ultimately results in synaptic dysfunction, neuroinflammation, and neurodegeneration. According to our findings, scopolamine administration resulted in LPO and ROS generation and decreased the protein levels of antioxidant proteins such as Nrf2 and HO-1; however, melatonin co-treatment mitigated the generation of oxidant factors while improving antioxidant protein levels. Similarly, melatonin ameliorated oxidative stress-mediated JNK activation, enhanced Akt/ERK/CREB signaling, promoted cell survival and proliferation, and promoted memory processes. Immunofluorescence and western blot analysis indicated that melatonin reduced activated gliosis via attenuation of Iba-1 and GFAP. We also found that scopolamine promoted neuronal loss by inducing Bax, Pro-Caspase-3, and Caspase-3 and reducing the levels of the antiapoptotic protein Bcl-2. In contrast, melatonin significantly decreased the levels of apoptotic markers and increased neuronal survival. We further found that scopolamine disrupted synaptic integrity and, conversely, that melatonin enhanced synaptic integrity as indicated by Syntaxin, PSD-95, and SNAP-23 expression levels. Furthermore, melatonin ameliorated scopolamine-induced impairments in spatial learning behavior and memory formation. On the whole, our findings revealed that melatonin attenuated scopolamine-induced synaptic dysfunction and memory impairments by ameliorating oxidative brain damage, stress kinase expression, neuroinflammation, and neurodegeneration. Graphical Abstract The proposed schematic diagram showing the neuroprotective effect of melatonin against scopolamine-induced oxidative stress-mediated synaptic dysfunction, memory impairment neuroinflammation and neurodegeneration.


Asunto(s)
Amnesia/inducido químicamente , Amnesia/prevención & control , Antioxidantes/farmacología , Encefalitis/prevención & control , Melatonina/farmacología , Antagonistas Muscarínicos , Enfermedades Neurodegenerativas/prevención & control , Estrés Oxidativo/efectos de los fármacos , Escopolamina , Amnesia/psicología , Animales , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Sinapsis/efectos de los fármacos
13.
Mol Neurobiol ; 56(4): 2774-2790, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30058023

RESUMEN

Microglia play a crucial role in the inflammatory brain response to infection. However, overactivation of microglia is neurotoxic. Toll-like receptor 4 (TLR4) is involved in microglial activation via lipopolysaccharide (LPS), which triggers a variety of cytotoxic pro-inflammatory markers that produce deleterious effects on neuronal cells. Ferulic acid (FA) is a phenolic compound that exerts antioxidant and anti-inflammatory effects in neurodegenerative disease. However, the manner in which FA inhibits neuroinflammation-induced neurodegeneration is poorly understood. Therefore, we investigated the anti-inflammatory effects of FA against LPS-induced neuroinflammation in the mouse brain. First, we provide evidence that FA interferes with TLR4 interaction sites, which are required for the activation of microglia-induced neuroinflammation, and further examined the potential mechanism of its neuroprotective effects in the mouse hippocampus using molecular docking simulation and immunoblot analysis. Our results indicated that FA treatment inhibited glial cell activation, p-JNK, p-NFKB, and downstream signaling molecules, such as iNOS, COX-2, TNF-α, and IL-1ß, in the mouse hippocampus and BV2 microglial cells. FA treatment strongly inhibited mitochondrial apoptotic signaling molecules, such as Bax, cytochrome C, caspase-3, and PARP-1, and reversed deregulated synaptic proteins, including PSD-95, synaptophysin, SNAP-25, and SNAP-23, and synaptic dysfunction in LPS-treated mice. These findings demonstrated that FA treatment interfered with the TLR4/MD2 complex binding site, which is crucial for evoking neuroinflammation via microglia activation and inhibited NFKB likely via a JNK-dependent mechanism, which suggests a therapeutic implication for neuroinflammation-induced neurodegeneration.


Asunto(s)
Ácidos Cumáricos/uso terapéutico , Hipocampo/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Biomarcadores/metabolismo , Línea Celular , Cognición/efectos de los fármacos , Ácidos Cumáricos/farmacología , Hipocampo/efectos de los fármacos , Inflamación/patología , Mediadores de Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Degeneración Nerviosa/patología , Síndromes de Neurotoxicidad/patología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Front Neurosci ; 12: 888, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618542

RESUMEN

Ischemic stroke is characterized by permanent or transient obstruction of blood flow, which initiates a cascading pathological process, starting from acute ATP loss to subsequent membrane depolarization, glutamate excitotoxicity, and calcium overload. Melatonin is a potent antioxidant that exerts protective effects in different experimental stroke models. In this study, melatonin effects were demonstrated by a proteomic and in silico approach. The proteomic study identified differentially expressed proteins by 2D gel electrophoresis in the striatum 24 h after middle cerebral artery occlusion. Proteomic analysis revealed several proteins with aberrant expression and was validated by western blot and immunofluorescence analysis. Homology modeling was performed to build 3D structures for γ-enolase, thioredoxin (TRX), and heat shock 60 (HSP60) by the template crystal structures using a protein data bank as a sequence database. The structure refinement of each model was achieved by energy minimization via molecular dynamic simulation, and the generated models were further assessed for stability by Procheck and ProSA. The models were processed for docking analysis using AutoDock Vina, and post-docking analysis was determined by discovery studio. The proteomic study showed decreased expression of γ-enolase, TRX, and protein phosphatase 2A subunit B and increased expression of collapsin response mediator protein 2 and HSP60 in the striatum after ischemic injury. Treatment with melatonin modulated the expression profiles of these proteins. This study demonstrated the neuroprotective role of melatonin in the ischemic striatum using a proteomic and in silico approach. Collectively, melatonin may act in a multimechanistic way by modulating the expression of several proteins in the ischemic striatum.

15.
Front Pharmacol ; 9: 1383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618732

RESUMEN

Chronic neuroinflammation is responsible for multiple neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Lipopolysaccharide (LPS) is an essential component of the gram-negative bacterial cell wall and acts as a potent stimulator of neuroinflammation that mediates neurodegeneration. Quercetin is a natural flavonoid that is abundantly found in fruits and vegetables and has been shown to possess multiple forms of desirable biological activity including anti-inflammatory and antioxidant properties. This study aimed to evaluate the neuroprotective effect of quercetin against the detrimental effects of LPS, such as neuroinflammation-mediated neurodegeneration and synaptic/memory dysfunction, in adult mice. LPS [0.25 mg/kg/day, intraperitoneally (I.P.) injections for 1 week]-induced glial activation causes the secretion of cytokines/chemokines and other inflammatory mediators, which further activate the mitochondrial apoptotic pathway and neuronal degeneration. Compared to LPS alone, quercetin (30 mg/kg/day, I.P.) for 2 weeks (1 week prior to the LPS and 1 week cotreated with LPS) significantly reduced activated gliosis and various inflammatory markers and prevented neuroinflammation in the cortex and hippocampus of adult mice. Furthermore, quercetin rescued the mitochondrial apoptotic pathway and neuronal degeneration by regulating Bax/Bcl2, and decreasing activated cytochrome c, caspase-3 activity and cleaving PARP-1 in the cortical and hippocampal regions of the mouse brain. The quercetin treatment significantly reversed the LPS-induced synaptic loss in the cortex and hippocampus of the adult mouse brain and improved the memory performance of the LPS-treated mice. In summary, our results demonstrate that natural flavonoids such as quercetin can be beneficial against LPS-induced neurotoxicity in adult mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA