Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
4.
RSC Adv ; 13(36): 24955-24972, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37614788

RESUMEN

In2Se3 and In2Te3 have great importance in various device fabrications. The present report is based on the annealing-induced phase formation of both In2Se3 and In2Te3 from In10Se70Te20 thin films at different annealing temperatures as found from the XRD analysis and well supported by the Raman study. The average crystallite size increased with a decrease in the dislocation density. The surface morphology changed with annealing and increased in particle size as noticed from the FESEM images. The uniform distribution and presence of constituent elements in the film were verified using EDX data. The increase in transmittance is accompanied by a decrease in extinction coefficient, optical density and increase in skin depth with annealing. The increase in optical bandgap from 0.418 eV to 0.645 eV upon annealing at 250 °C is associated with a decrease in disorder. The steepness parameter increased and the Se-p value decreased with annealing. The refractive index decreased with an increase in oscillator energy and decrease in dispersion energy. The quality factor, dielectric loss, optical conductivity and electrical susceptibility decreased. The optical electronegativity and plasma frequency increased with annealing. There is a significant change in the non-linear susceptibility and non-linear refractive index with annealing. The observed changes in the film structure and optical behaviour are due to the annealing-induced phase formation from the In10Se70Te20 host matrix upon annealing. Such materials are suitable for optoelectronic and phase change devices.

5.
RSC Adv ; 13(7): 4236-4248, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36744282

RESUMEN

The impact of laser irradiation on thin films results in multiple beneficial modifications of their structural, morphological, nonlinear-linear properties for optoelectronics applications. This work deals with the thermally evaporated Ag10In15S15Se60 films and post-laser irradiation to study the variations in structural and optical properties. The current investigation was carried out for different laser irradiation time durations such as 0, 10, 20, 30, and 60 minutes by 532 nm laser (2.34 eV). According to the X-ray diffraction analysis, all thin films have polycrystalline character. The change in the surface morphology after being exposed to the laser has been checked by FESEM, whereas the presence of constitutional elements has been verified by the EDX study. The related changes with laser irradiation in the optical properties, including both linear and nonlinear, were studied using UV-Vis spectroscopy data. The irradiation caused an enhancement in the transmission, and the absorption edge moved towards a lower wavelength, increasing the bandgap energy from 1.71 eV to 1.88 eV. The refractive index reduced as a result of the film's altered structure. The behaviour of the refractive index satisfies Moss's rule (E g n 4 = const). The nonlinear refractive index, first-order and 3rd order nonlinear susceptibility, is found to be decreased with laser irradiation. The dielectric parameters are also observed to be decreased with irradiation. Considering all the alterations in its properties caused by irradiation, the Ag10In15S15Se60 sample could be a favourable material for various photonic devices.

6.
RSC Adv ; 12(8): 5012-5026, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35425520

RESUMEN

This paper reports the effects of ion irradiation on the structural, linear, and nonlinear optical properties of thermally evaporated Bi5In30Se65 thin films. The prepared films were irradiated with 30 keV proton ions with different fluences, such as 5 × 1015 ions per cm2, 1 × 1016 ions per cm2, and 5 × 1016 ions per cm2. Structural analysis via X-ray diffraction (XRD) confirmed the non-crystalline nature of the film after ion irradiation with different doses. However, after the irradiation dose, the surface morphology changed, as shown by atomic force microscopy (AFM) images and field emission scanning electron microscopy (FESEM) images. The compositions of the films were obtained using energy-dispersive X-ray spectroscopy (EDX). Optical analysis via UV-Visible spectroscopy showed a reduction in the transmittance and an increase in the absorption in the higher wavelength region with irradiation. The optical bandgap and Tauc parameter decreased with an increase in the irradiation fluence, which is due to an increase in the irradiation-induced defects and disorder inside the system. The increases in the third order nonlinear susceptibility and the nonlinear refractive index with ion fluence are useful for nonlinear optical applications. The linear refractive index calculated from the transmittance data increased, satisfying Moss's rule. The optical parameters, such as lattice dielectric constant, optical density, skin depth, optical conductivity, real and imaginary dielectric constants, optical conductivity, loss factor, VELF, and SELF, were calculated using several empirical relationships and showed increasing behavior with the ion irradiation dose. The changes obtained in both the linear and nonlinear parameters will be useful for nonlinear optical device applications.

7.
Sci Rep ; 11(1): 21518, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728771

RESUMEN

The present work demonstrates the impact of thermal annealing on the structural, linear, and non-linear optical characteristics of thermally evaporated BixIn35-xSe65 (x = 0, 5, 10, 15 at%) thin films. The prominent crystalline phases have been developed for all annealed films at 450 °C whereas the films remain amorphous at 350 °C annealing. The XRD and Raman analysis showed the phase transformation of Bi-doped films and new Bi2Se3 phases developed upon annealing at 450 °C. The phase transformation induced change increased the linear and nonlinear properties with great extent as seen from the UV-visible optical studies. The direct and indirect optical bandgaps decreased with annealing temperature and also with Bi % content due to the formation of surface dangling bonds near the crystallite sites. The static linear refractive index and high-frequency dielectric constants were increased with annealing. The third-order non-linear susceptibility and non-linear refractive index were found to be greatly influenced by annealing temperature and increased with bismuth content. The FESEM micrographs also showed the phase transformation and EDX analysis showed the composition. The results obtained from the materials showed the potentiality to be useful for photovoltaic and optoelectronic applications.

8.
RSC Adv ; 11(26): 16015-16025, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35481185

RESUMEN

The photosensitivity of amorphous chalcogenide thin films brings out light-induced changes in the nonlinear and linear optical parameters upon sub-bandgap and bandgap laser irradiation. The present work reports the in situ laser irradiated changes in the optical properties of As50Se40Sb10 thin films. The thermally evaporated film showed an exponential decrease in optical bandgap and increase in Urbach energy. The decay rate of the bandgap was 6.24 min and growth rate of Urbach energy was 6.67 min respectively. The dynamics of photo-induced changes were observed from the changes in linear refractive index and its dependent parameters such as 3rd order nonlinear susceptibility, nonlinear refractive index, dispersion and dielectric parameters. The conversion of heteropolar to homopolar bonds induced the photodarkening mechanism that changed the dispersion parameters. The decrease in E d and E o reduced the oscillator strength along with the zero-frequency dielectric constant. The optical and electrical conductivity changed significantly with time. The changes were saturated with time which brings stability in the film properties that is useful for various optical applications. However, no structural and compositional changes upon laser irradiation were noticed from the X-ray diffraction and EDX studies respectively. The surface homogeneity was checked from the FESEM picture.

9.
RSC Adv ; 10(45): 26675-26685, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35515774

RESUMEN

The present work shows the effect of annealing conditions on the linear and nonlinear optical properties of two-year-old thermally evaporated 800 nm As40Se50Ge10 thin films. The aging effect in this film is clearly noticeable as compared with the old observation. The two-year-old films were annealed at different temperatures like 373, 413, 453 and 493 K for 1 h. The optical parameters were calculated from the optical transmittance and reflectance spectra measured at normal incidence of light by spectrometer in the 500-1000 nm range. The linear refractive index (n) and extinction coefficient (k) were decreased with annealing temperature. The observation reveals the increase in optical band gap with increase in annealing temperature while the width of the tail in the gap has an opposite behaviour. The oscillator energy, dispersion energy, dielectric constant, the loss factor, and optical conductivity were discussed in detail. The nonlinear refractive index and optical susceptibility were calculated by using Miller's formula which decreased with annealing temperature. The changes in both linear and nonlinear optical parameters with annealing temperature showed that annealing temperature can be considered as a useful factor for controlling the optical properties of As40Se50Ge10 chalcogenide films which could be the candidate for numerous photonic applications. The structural study was done by X-ray diffraction and Raman spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA