Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37047967

RESUMEN

Searching for alternative low-cost biosorbents for the removal of textile dyes from wastewater is currently an important subject of research. In this work, we have investigated how the presence of other contaminants in textile wastewaters can affect dye adsorption by biosorbents. We tested the adsorption of three dyes of different types: Basic Violet 10 (BV10), Acid Blue 113 (AB113) and Direct Blue 71 (DB71) by two different composts-municipal solid waste compost and pine bark compost-in the presence of Zn (5 mg L-1) or dissolved organic matter (100 mg humic acids L-1) in batch experiments. Dye adsorption capacity for both composts followed the following sequence: BV10 > AB113 > DB71. In general, dye sorption at the equilibrium was adequately described by the Freundlich model, but not always by the Langmuir model, which did not allow for the estimation of maximum retention capacities in all cases. In general, these were around 1 mg g-1 for DB71, 2 mg g-1 for AB113, and 40 mg g-1 for BV10. Municipal solid waste compost had slightly higher affinity than pine bark compost for the anionic dyes AB113 and DB71, whereas for the cationic dye BV10, pine bark compost presented a much higher adsorption capacity (41.7 mg g-1 versus 6.8 mg g-1). The presence of Zn or dissolved organic matter in the solutions at typical wastewater concentrations did not decrease the dye adsorption capacity of the composts. This result is positive both for the real application of composts to real textile wastewaters and for the validity of the results of biosorbent performance obtained with single-dye solutions.


Asunto(s)
Compostaje , Contaminantes Químicos del Agua , Zinc , Aguas Residuales , Sustancias Húmicas , Residuos Sólidos , Adsorción , Colorantes , Agua , Materia Orgánica Disuelta , Cinética , Concentración de Iones de Hidrógeno
2.
J Environ Manage ; 294: 113005, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130138

RESUMEN

Research on biosorption of organic dyes is an important subject for the development of clean technologies for the treatment of textile wastewater. In this work, the process of sorption of four textile dyes of different natures, namely Basic Violet 10 (BV10), Acid Red 27 (AR27), Direct Blue 151 (DB151) and Reactive Violet 4 (RV4) onto two composts, pine bark compost and municipal solid waste compost, has been studied. For this, sorption kinetics and equilibrium sorption at different solution pH values (3.0-7.0) and salinity (0-1.0 M KCl) conditions have been assessed in batch experiments. Sorption rates were relatively slow for BV10, reaching equilibrium only after 24 h, and faster for the rest: around 5-6 h for RV4 and AR27 and 2 h for DB151. Kinetics of dye sorption followed a pseudo-first order model, except that of DB151, which was better described by a pseudo-second order model. The sequence of adsorption capacity for both composts was as follows: BV10 > DB151 > RV4 > AR27. In general, dye sorption at the equilibrium was adequately described by the Langmuir model, what allows to estimate maximum retention capacities for each dye by the composts. At the best removal conditions, pine bark compost presented maximum sorption capacities of 204 mg g-1 for BV10, 54 mg g-1 for DB151, 23 mg g-1 for RV4, and 4.1 mg g-1 for AR27, whereas municipal solid waste compost showed maximum sorption of 74 mg g-1 for DB151, 38 mg g-1 for RV4, 36 mg g-1 for BV10, and 1.6 mg g-1 for AR27. Sorption increased at acid pH in all cases, likely because of modification of charges of the dyes and higher electrostatic attraction, whereas increasing salinity also had a positive effect on sorption, attributed to a solute-aggregation mechanism in solution. In conclusion, organic waste-derived products, like composts, can be applied in the removal of colorants from wastewater, although they would be more effective for the removal of basic cationic dyes than other types, due to electrostatic interaction with mostly negatively-charged composts.


Asunto(s)
Compostaje , Contaminantes Químicos del Agua , Adsorción , Colorantes , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales
3.
Materials (Basel) ; 13(9)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397420

RESUMEN

Utilization of composts as low-cost adsorbents is an important application in the field of environmental remediation, but these materials have not yet been extensively used for dye removal. In this work, we have studied the characteristics of adsorption of methylene blue onto two composts (a municipal solid waste compost and a pine bark compost). Kinetics and equilibrium batch experiments testing the influence of adsorbent particle size, solution pH and ionic strength were performed. Both composts have a high adsorption capacity for methylene blue, similar to other low-cost adsorbents. Kinetics of adsorption followed a pseudo-first-order model, with maximum adsorption reached after a contact time of two hours. Equilibrium adsorption followed a Langmuir model in general. Reduction of particle size only increased adsorption slightly for composted pine bark. Increase in ionic strength had no effect on adsorption by municipal solid waste compost, but increased adsorption by composted pine bark. Modification of pH between 5 and 7 did not influence adsorption in any case. Overall, the results suggest that electrostatic interaction between the cationic dye and the anionic functional groups in the composts is not the only mechanism involved in adsorption. In conclusion, the use of composts for dye removal is a likely application, in particular for those composts presenting limitations for agricultural use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA