Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18634, 2024 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128922

RESUMEN

Water scarcity and droughts are among the most challenging issues worldwide, particularly in arid and semi-arid regions like Saudi Arabia. Date palm (Phoenix dactylifera L.), a major crop in Saudi Arabia, is being significantly affected by water scarcity, soil salinity, and desertification. Alternative water sources are needed to conserve freshwater resources and increase date palm production in Saudi Arabia. On the other hand, Saudi Arabia has a significant number of aquaculture farms that generate substantial amounts of wastewater, which can be utilized as an alternative source of irrigation. Therefore, this study aimed to assess the potential of aquaculture wastewater as an alternative irrigation source for date palm orchards. Aquaculture wastewater was collected from 12 different farms (Al-Kharj, Al-Muzahmiya, and Al-Qassim regions, Saudi Arabia) and its quality was analyzed. The impacts of aquaculture wastewater irrigation on soil quality, nutrient availability, nutrient status of date palm trees, and dates fruit quality were assessed in comparison to source water (freshwater) irrigation at Al-Kharj, Al-Muzahmiya, and Al-Qassim regions. The water quality analyses showed higher salinity (EC = 3.31 dSm-1) in farm Q3, while all other farms demonstrated no salinity, sodicity, or alkalinity hazards. Moreover, the aquaculture wastewater irrigation increased soil available P, K, NO3--N, and NH4+-N by 49.31%, 21.11%, 33.62%, and 52.31%, respectively, compared to source water irrigation. On average, date palm fruit weight, length, and moisture contents increased by 26%, 23%, and 43% under aquaculture wastewater irrigation compared to source water irrigation. Further, P, K, Fe, Cu, and Zn contents in date palm leaf were increased by 19.35%, 34.17%, 37.36%, 38.24%, and 45.29%, respectively, under aquaculture wastewater irrigation compared to source water irrigation. Overall, aquaculture wastewater irrigation significantly enhanced date palm plant growth, date palm fruit quality, and soil available nutrients compared to freshwater irrigation. It was concluded that aquaculture wastewater can be used as an effective irrigation source for date palm farms as it enhances soil nutrient availability, date palm growth, and date fruit yield and quality. The findings of this study suggest that aquaculture wastewater could be a viable alternative for conserving freshwater resources and increase date palm production in Saudi Arabia.


Asunto(s)
Riego Agrícola , Acuicultura , Frutas , Phoeniceae , Suelo , Aguas Residuales , Riego Agrícola/métodos , Acuicultura/métodos , Suelo/química , Frutas/crecimiento & desarrollo , Arabia Saudita , Nutrientes/análisis , Salinidad
2.
Sci Rep ; 14(1): 1259, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218904

RESUMEN

In this study, biochar (BC) and hydrochar (HC) composites were synthesized with natural kaolinite clay and their properties, stability, carbon (C) sequestration potential, polycyclic aromatic hydrocarbons (PAHs) toxicity, and impacts on maize germination and growth were explored. Conocarpus waste was pretreated with 0%, 10%, and 20% kaolinite and pyrolyzed to produce BCs (BC, BCK10, and BCK20, respectively), while hydrothermalized to produce HCs (HC, HCK10, and HCK20, respectively). The synthesized materials were characterized using X-ray diffraction, scanning electron microscope analyses, Fourier transform infrared, thermogravimetric analysis, surface area, proximate analyses, and chemical analysis to investigate the distinction in physiochemical and structural characteristics. The BCs showed higher C contents (85.73-92.50%) as compared to HCs (58.81-61.11%). The BCs demonstrated a higher thermal stability, aromaticity, and C sequestration potential than HCs. Kaolinite enriched-BCs showed the highest cation exchange capacity than pristine BC (34.97% higher in BCK10 and 38.04% higher in BCK20 than pristine BC), while surface area was the highest in kaolinite composited HCs (202.8% higher in HCK10 and 190.2% higher in HCK20 than pristine HC). The recalcitrance index (R50) speculated a higher recalcitrance for BC, BCK10, and BCK20 (R50 > 0.7), minimal degradability for HCK10 and HCK20 (0.5 < R50 < 0.7), and higher degradability for biomass and HC (R50 < 0.5). Overall, increasing the kaolinite enrichment percentage significantly enhanced the thermal stability and C sequestration potential of charred materials, which may be attributed to changes in the structural arrangements. The ∑ total PAHs concentration in the synthesized materials were below the USEPA's suggested limits, indicating their safe use as soil amendments. Germination indices reflected positive impacts of synthesized charred materials on maize germination and growth. Therefore, we propose that kaolinite-composited BCs and HCs could be considered as efficient and cost-effective soil amendments for improving plant growth.


Asunto(s)
Caolín , Zea mays , Carbón Orgánico/química , Suelo/química
3.
Environ Pollut ; 335: 122319, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544401

RESUMEN

Extensive production and utilization of plastic products have resulted in the generation of microplastics (MPs), subsequently polluting the environment. The efficiency of biochars (BCs) derived from jujube (Ziziphus jujube L.) biomass (300 °C and 700 °C) for nylon (NYL) and polyethylene (PE) removal from contaminated water was explored in fixed-bed column trials. The optimum pH for the removal of both MPs was found 7. Both of the produced biochars demonstrated >99% removal of the MPs, while the sand filter exhibited a maximum of 78% removal of MPs. BC produced at 700 °C (BC700) showed 33-fold higher MPs retention, while BC produced at 300 °C (BC300) exhibited 20-fold higher retention, as compared to sand filters, indicating the higher efficiency of BC produced at higher pyrolysis temperature. Entrapment into the pores, entanglement with flaky structures of the BCs, and electrostatics interactions were the major mechanism for MPs retention in BCs. The efficiency of MPs-amended BCs was further explored for the removal of Pb(II) and Cd(II) in fixed-bed column trials. BC700 amended with PE and NYL exhibited the highest 50% breakthrough time (2114.23 and 2024.61 min, respectively, for Pb(II) removal and 2107.92 and 1965.19 min, respectively, for Cd(II) removal), as compared to sand filters (38.07 and 60.49 min for Pb(II) and Cd(II) removal, respectively). Thomas model predicted highest adsorption capacity was exhibited by BC700 amended with PE (584.34 and 552.80 mg g-1, for Pb(II) and Cd(II) removal, respectively), followed by BC700 amended with NYL (557.65 and 210.59 mg g-1 for Pb(II) and Cd(II) removal, respectively). Therefore, jujube waste-derived BCs could be used as efficient adsorbents to remove PE and NYL from contaminated water, while MPs-loaded BCs can further be utilized for higher adsorption of Pb(II) and Cd(II) from contaminated aqueous media. These findings suggest that BC could be used as an efficient adsorbent to remove the co-existing MPs-metals ions from the environment on a sustainable basis.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ziziphus , Microplásticos , Plásticos , Cadmio , Agua , Plomo , Carbón Orgánico/química , Nylons , Adsorción , Polietilenos , Contaminantes Químicos del Agua/química
4.
Sci Rep ; 12(1): 8972, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643781

RESUMEN

Sources and levels of heavy metals (HMs) in soil and dust of urban and suburban areas in Riyadh (industrial city) and Mahad AD'Dahab (mining area) cities in Saudi Arabia were reported in this study. Additionally, the concentrations of HMs in different soil particle size fractions (> 250, 63-250 and < 63 µm) were reported. Pollution extent, and ecological and human health risks associated with collected soil and dust samples were explored. Contamination levels of HMs were higher in dust as compared to soil samples at all sites. The average integrated potential ecological risk in dust samples of urban area of Mahad AD'Dahab was 139, and thus characterized as a very-high-risk criterion. Enrichment factor (EF), correlation analyses, and principal component analysis showed that aluminum (Al), cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), titanium (Ti), and zinc (Zn) had mainly the lithogenic occurrence (EF < 2). However, Zn, copper (Cu), and lead (Pb) in Riyadh, and cadmium (Cd), Cu, Zn, and Pb in the Mahad AD'Dahab were affected by industrial and mining activities, respectively, that were of anthropogenic origins (EF > 2). The hazard index values of dust and soil (< 63 µm) samples in both urban and suburban areas in Mahad AD'Dahab were > 1, suggesting non-carcinogenic risk. Therefore, the dust and soil samples from the mined area of Mahad AD'Dahab had a higher pollution levels, as well as ecological and human health risks than those from Riyadh. Hence, the pollution of such residential environments with HMs (especially Cd, Cu, Zn, and Pb) needs to be monitored.


Asunto(s)
Polvo , Metales Pesados , Cadmio/análisis , Polvo/análisis , Monitoreo del Ambiente , Humanos , Plomo/análisis , Metales Pesados/análisis , Metales Pesados/toxicidad , Medición de Riesgo , Suelo , Zinc/análisis
5.
Plants (Basel) ; 10(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34961036

RESUMEN

Elevated levels of doxycycline (DC) have been detected in the environment due to its extensive utilization as a veterinary antibiotic. Sorption-desorption behavior of DC in soil affects its transport, transformation, and availability in the environment. Thus, sorption-desorption behavior of DC was explored in three soils (S1, S2, and S3) after manure application with and without mesquite wood-waste-derived biochar (BC) pyrolyzed at 600 °C. Sorption batch trials demonstrated the highest DC sorption in soil S1 as compared to S2 and S3, either alone or in combination with manure or manure + BC. Chemical sorption and pore diffusion were involved in DC sorption, as indicated by the kinetic models. Soil S1 with manure + BC exhibited the highest Langmuir model predicted sorption capacity (18.930 mg g-1) compared with the other two soils. DC sorption capacity of soils was increased by 5.0-6.5-fold with the addition of manure, and 10-13-fold with BC application in a soil-manure system. In desorption trials, manure application resulted in 67%, 40%, and 41% increment in DC desorption in soil S1, S2, and S3, respectively, compared to the respective soils without manure application. In contrast, BC application reduced DC desorption by 73%, 66%, and 65%, in S1, S2, and S3, respectively, compared to the soils without any amendment. The highest DC sorption after BC application could be due to H bonding, π-π EDA interactions, and diffusion into the pores of BC. Hence, mesquite wood-waste-derived BC can effectively be used to enhance DC retention in contaminated soil to ensure a sustainable ecosystem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA