Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Semin Vasc Surg ; 37(3): 342-349, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277351

RESUMEN

Virtual assistants, broadly defined as digital services designed to simulate human conversation and provide personalized responses based on user input, have the potential to improve health care by supporting clinicians and patients in terms of diagnosing and managing disease, performing administrative tasks, and supporting medical research and education. These tasks are particularly helpful in vascular surgery, where the clinical and administrative burden is high due to the rising incidence of vascular disease, the medical complexity of the patients, and the potential for innovation and care advancement. The rapid development of artificial intelligence, machine learning, and natural language processing techniques have facilitated the training of large language models, such as GPT-4 (OpenAI), which can support the development of increasingly powerful virtual assistants. These tools may support holistic, multidisciplinary, and high-quality vascular care delivery throughout the pre-, intra-, and postoperative stages. Importantly, it is critical to consider the design, safety, and challenges related to virtual assistants, including data security, ethical, and equity concerns. By combining the perspectives of patients, clinicians, data scientists, and other stakeholders when developing, implementing, and monitoring virtual assistants, there is potential to harness the power of this technology to care for vascular surgery patients more effectively. In this comprehensive review article, we introduce the concept of virtual assistants, describe potential applications of virtual assistants in vascular surgery for clinicians and patients, highlight the benefits and drawbacks of large language models, such as GPT-4, and discuss considerations around the design, safety, and challenges associated with virtual assistants in vascular surgery.


Asunto(s)
Procedimientos Quirúrgicos Vasculares , Humanos , Procedimientos Quirúrgicos Vasculares/efectos adversos , Cirujanos/educación , Prestación Integrada de Atención de Salud/organización & administración , Enfermedades Vasculares/cirugía , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/diagnóstico por imagen
2.
J Am Heart Assoc ; 13(17): e035425, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39189482

RESUMEN

BACKGROUND: Transfemoral carotid artery stenting (TFCAS) carries important perioperative risks. Outcome prediction tools may help guide clinical decision-making but remain limited. We developed machine learning algorithms that predict 1-year stroke or death following TFCAS. METHODS AND RESULTS: The VQI (Vascular Quality Initiative) database was used to identify patients who underwent TFCAS for carotid artery stenosis between 2005 and 2024. We identified 112 features from the index hospitalization (82 preoperative [demographic/clinical], 13 intraoperative [procedural], and 17 postoperative [in-hospital course/complications]). The primary outcome was 1-year postprocedural stroke or death. The data were divided into training (70%) and test (30%) sets. Six machine learning models were trained using preoperative features with 10-fold cross-validation. The primary model evaluation metric was area under the receiver operating characteristic curve. The algorithm with the best performance was further trained using intra- and postoperative features. Model robustness was assessed using calibration plots and Brier scores. Overall, 35 214 patients underwent TFCAS during the study period and 3257 (9.2%) developed 1-year stroke or death. The best preoperative prediction model was extreme gradient boosting, achieving an area under the receiver operating characteristic curve of 0.94 (95% CI, 0.93-0.95). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67). The extreme gradient boosting model maintained excellent performance at the intra- and postoperative stages, with area under the receiver operating characteristic curve values of 0.94 (95% CI, 0.93-0.95) and 0.98 (95% CI, 0.97-0.99), respectively. Calibration plots showed good agreement between predicted/observed event probabilities with Brier scores of 0.11 (preoperative), 0.11 (intraoperative), and 0.09 (postoperative). CONCLUSIONS: Machine learning can accurately predict 1-year stroke or death following TFCAS, performing better than logistic regression.


Asunto(s)
Estenosis Carotídea , Arteria Femoral , Aprendizaje Automático , Stents , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Estenosis Carotídea/cirugía , Estenosis Carotídea/terapia , Anciano , Accidente Cerebrovascular/etiología , Medición de Riesgo/métodos , Resultado del Tratamiento , Factores de Riesgo , Estudios Retrospectivos , Persona de Mediana Edad , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/métodos , Valor Predictivo de las Pruebas , Anciano de 80 o más Años , Bases de Datos Factuales , Factores de Tiempo
3.
J Vasc Surg Venous Lymphat Disord ; : 101943, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084408

RESUMEN

OBJECTIVE: Inferior vena cava (IVC) filter placement is associated with important long-term complications. Predictive models for filter-related complications may help guide clinical decision-making but remain limited. We developed machine learning (ML) algorithms that predict 1-year IVC filter complications using preoperative data. METHODS: The Vascular Quality Initiative database was used to identify patients who underwent IVC filter placement between 2013 and 2024. We identified 77 preoperative demographic and clinical features from the index hospitalization when the filter was placed. The primary outcome was 1-year filter-related complications (composite of filter thrombosis, migration, angulation, fracture, and embolization or fragmentation, vein perforation, new caval or iliac vein thrombosis, new pulmonary embolism, access site thrombosis, or failed retrieval). The data were divided into training (70%) and test (30%) sets. Six ML models were trained using preoperative features with 10-fold cross-validation (Extreme Gradient Boosting, random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Model robustness was assessed using calibration plot and Brier score. Performance was evaluated across subgroups based on age, sex, race, ethnicity, rurality, median Area Deprivation Index, planned duration of filter, landing site of filter, and presence of prior IVC filter placement. RESULTS: Overall, 14,476 patients underwent IVC filter placement and 584 (4.0%) experienced 1-year filter-related complications. Patients with a primary outcome were younger (59.3 ± 16.7 years vs 63.8 ± 16.0 years; P < .001) and more likely to have thrombotic risk factors including thrombophilia, prior venous thromboembolism (VTE), and family history of VTE. The best prediction model was Extreme Gradient Boosting, achieving an AUROC of 0.93 (95% confidence interval, 0.92-0.94). In comparison, logistic regression had an AUROC of 0.63 (95% confidence interval, 0.61-0.65). Calibration plot showed good agreement between predicted/observed event probabilities with a Brier score of 0.07. The top 10 predictors of 1-year filter-related complications were (1) thrombophilia, (2) prior VTE, (3) antiphospholipid antibodies, (4) factor V Leiden mutation, (5) family history of VTE, (6) planned duration of IVC filter (temporary), (7) unable to maintain therapeutic anticoagulation, (8) malignancy, (9) recent or active bleeding, and (10) age. Model performance remained robust across all subgroups. CONCLUSIONS: We developed ML models that can accurately predict 1-year IVC filter complications, performing better than logistic regression. These algorithms have potential to guide patient selection for filter placement, counselling, perioperative management, and follow-up to mitigate filter-related complications and improve outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA