Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35329476

RESUMEN

The global increase of road infrastructure and its impact on the environment requires serious attention to develop sustainable and environmentally friendly road materials. One group of those materials is produced by using bitumen emulsion. However, there are still scientific and technical obstacles standing against its regular application. The bitumen emulsion formulation process and compositional optimization are subjected to a high number of degrees of freedom. Consequently, obtaining the desired product is mostly based on a series of random and tedious trials because of the enormous number of tests that are carried out to meet the required properties, such as emulsion stability, viscosity, droplet size (and distribution), and bitumen emulsion chemistry. Several pre-established formulation procedures have been presented in the literature. Some of them have technical limitations to be utilized for practical industrial application, whereas others are still not understood enough to be applied in bitumen emulsion formulation. Therefore, discussing some important issues in this field could be useful to offer a practical guide for bitumen emulsion manufacturers when trying to formulate a well-defined bitumen emulsion to best fit its use in pavement infrastructure rather than to simply to meet standard specifications. This review paper aims to enable the ultimate potential of bitumen emulsion by further reviewing the research progress of bitumen emulsion manufacturing and discussing the literature available up to now on this topic, in the realm of bitumen emulsion manufacturing and emulsion chemistry.

2.
Materials (Basel) ; 13(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081334

RESUMEN

Cold Bitumen Emulsion (CBE) mixture technologies have been recently developed to lower pavement construction temperatures to reduce environmental costs and control gas emissions. Due to its poor early mechanical strength, active fillers (i.e., cement) have been used to obtain high early stiffness in order to have the potential for timely construction of the next layer. There is, however, a lack of understanding about the impact of active fillers on the viscoelastic behavior and fatigue damage resistance of CBE mastics. This study, therefore, aims to identify the influence of active fillers on the rheological properties and the resulting fatigue behavior of CBE mastic, supported by chemical analysis for the filler-bitumen emulsion. For this aim, bitumen emulsion was mixed separately with seven fillers/blended fillers to prepare the CBE mastics. Various experiments, including continuous pH monitoring tests (chemical reactivity of filler-bitumen emulsion), Strain Sweep (SS) tests, Temperature-Frequency Sweep (TFS) tests, Time Sweep (TS) tests, and Linear Amplitude Sweep (LAS) tests were conducted on the CBE binder and the prepared mastics. Results show that the rheological performance and the fatigue damage resistance depend not only on the filler inclusions but also on filler type and chemistry. On this basis, the rise in complex shear modulus and the decrease in the viscous component is associated with a significant enhancement in fatigue performance for specific fillers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA