Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Chromatogr ; 38(8): e5899, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797863

RESUMEN

Nanoliposomes (NLs) are ideal carriers for delivering complex molecules and phytochemical products, but ginger by-products, despite their therapeutic benefits, have poor bioavailability due to their low water solubility and stability. Crude ginger extracts (CGEs) and 6-gingerol were individually encapsulated within NLs for in vitro activity assessment. In vitro evaluation of anti-proliferative and anti-inflammatory properties of encapsulated 6-gingerol and CGE was performed on healthy human periodontal ligament (PDL) fibroblasts and MDA-MB-231 breast cancer cells. Encapsulation efficiency and loading capacity of 6-gingerol reached 25.23% and 2.5%, respectively. NLs were found stable for up to 30 days at 4°C with a gradual load loss of up to 20%. In vitro cytotoxic effect of encapsulated 6-gingerol exceeded 70% in the MDA-MB-231 cell line, in a comparable manner with non-encapsulated 6-gingerol and CGE. The effect of CGE with an IC50 of 3.11 ± 0.39, 7.14 ± 0.80, and 0.82 ± 0.55 µM and encapsulated 6-gingerol on inhibiting IL-8 was evident, indicating its potential anti-inflammatory activity. Encapsulating 6-gingerol within NLs enhanced its stability and facilitated its biological activity. All compounds, including vitamin C, were equivalent at concentrations below 2 mg/mL, with a slight difference in antioxidant activity. The concentrations capable of inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) substrate were comparable.


Asunto(s)
Antiinflamatorios , Catecoles , Alcoholes Grasos , Liposomas , Zingiber officinale , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Humanos , Catecoles/química , Catecoles/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Liposomas/química , Línea Celular Tumoral , Zingiber officinale/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Interleucina-8/metabolismo , Proliferación Celular/efectos de los fármacos
2.
Heliyon ; 9(6): e17267, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37408902

RESUMEN

Cancer is considered one of the top global causes of death. Natural products have been used in oncology medicine either in crude form or by utilizing isolated secondary metabolites. Biologically active phytomolecules such as gallic acid and quercetin have confirmed antioxidant, anti-bacterial, and neoplastic properties. There is an agreement that microorganisms could mediate oncogenesis or alter the immune system. This research project aims to develop a novel formulation of co-loaded gallic acid and quercetin into nanoliposomes and investigate the efficacy of the free and combined agents against multiple cancerous cell lines and bacterial strains. Thin-film hydration technique was adopted to synthesize the nanocarriers. Particle characteristics were measured using a Zetasizer. The morphology of nanoliposomes was examined by scanning electron microscopy, Encapsulation efficiency and drug loading were evaluated using High-Performance Liquid Chromatography. Cytotoxicity was determined against Breast Cancer Cells MCF-7, Human Carcinoma Cells HT-29, and A549 Lung Cancer Cells. The antibacterial activities were evaluated against Acinetobacter baumannii, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus. Therapeutic formulas were categorized into groups: free gallic acid, free quercetin, free-mix, and their nano-counterparts. Findings revealed that drug loading capacity was 0.204 for the mix formula compared to 0.092 and 0.68 for free gallic acid and quercetin, respectively. Regarding the Zeta potential, the mix formula showed more amphiphilic charge than the free quercetin and free gallic acid formulas (P-values 0.003 and 0.002 receptively). On the contrary, no significant difference in polydispersity indices was reported. Lung cancerous cells were the most affected by the treatments. The best estimated IC50 values were observed in breast and lung cancer lines for the nano-gallic acid and co-loaded particles. The nano-quercetin formula exhibited the least cytotoxicity with an IC50 value of ≥200 µg/mL in both breast (MCF-7) and colorectal adenocarcinoma cell lines (HT-29) with no activity against the lung. A remarkable improvement in the efficacy of quercetin was measured after mixing it with gallic acid against the breast and lungs. The tested therapeutic agents exhibited antimicrobial activity against gram-positive bacteria. Nano-liposomes can either enhance or reduce the cytotoxicity activity of active compounds depending on the physical and chemical properties of drug-loaded and type of cancer cells.

3.
Nutrients ; 14(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501201

RESUMEN

BACKGROUND: Nutrients are widely used for treating illnesses in traditional medicine. Ginger has long been used in folk medicine to treat motion sickness and other minor health disorders. Chronic non-healing wounds might elicit an inflammation response and cancerous mutation. Few clinical studies have investigated 6-gingerol's wound-healing activity due to its poor pharmacokinetic properties. However, nanotechnology can deliver 6-gingerol while possibly enhancing these properties. Our study aimed to develop a nanophytosome system loaded with 6-gingerol molecules to investigate the delivery system's influence on wound healing and anti-cancer activities. METHODS: We adopted the thin-film hydration method to synthesize nanophytosomes. We used lipids in a ratio of 70:25:5 for DOPC(dioleoyl-sn-glycero-3-phosphocholine): cholesterol: DSPE/PEG2000, respectively. We loaded the 6-gingerol molecules in a concentration of 1.67 mg/mL and achieved size reduction via the extrusion technique. We determined cytotoxicity using lung, breast, and pancreatic cancer cell lines. We performed gene expression of inflammation markers and cytokines according to international protocols. RESULTS: The synthesized nanophytosome particle sizes were 150.16 ± 1.65, the total charge was -13.36 ± 1.266, and the polydispersity index was 0.060 ± 0.050. Transmission electron microscopy determined the synthesized particles' spherical shape and uniform size. The encapsulation efficiency was 34.54% ± 0.035. Our biological tests showed that 6-gingerol nanophytosomes displayed selective antiproliferative activity, considerable downregulation of inflammatory markers and cytokines, and an enhanced wound-healing process. CONCLUSIONS: Our results confirm the anti-cancer activity of PEGylated nanophytosome 6-gingerol, with superior activity exhibited in accelerating wound healing.


Asunto(s)
Catecoles , Alcoholes Grasos , Alcoholes Grasos/farmacología , Catecoles/farmacocinética , Tamaño de la Partícula , Cicatrización de Heridas
4.
J Cosmet Dermatol ; 21(8): 3265-3271, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35032353

RESUMEN

Cosmetics, cosmeceuticals, and variable healthcare products used parabens, among other excipients, for their preservative and antimicrobial activities. Paraben derivatives exhibit distinguished physiochemical properties that enable them to be compatible with the formulation of cosmetic agents in different dosage forms. In addition to their potency and efficacy, parabens are economically efficient as they have low-manufacturing costs. Despite the desirable characteristics, the safety of parabens use is controversial after detecting these chemicals in various biological tissues after repetitive and long-term use of formulations containing them. The use of parabens drew public health attention after scientific reports linked skin exposure to parabens with health issues, in particular, breast cancer. In response, worldwide authorities set regulations for the allowance concentrations of paraben to be used in variable cosmetic products.


Asunto(s)
Cosmecéuticos , Cosméticos , Cosmecéuticos/efectos adversos , Cosméticos/química , Excipientes , Humanos , Parabenos/efectos adversos , Conservadores Farmacéuticos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA