Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36903822

RESUMEN

Additively manufactured (AM) composites based on short carbon fibers possess strength and stiffness far less than their continuous fiber counterparts due to the fiber's small aspect ratio and inadequate interfaces with the epoxy matrix. This investigation presents a route for preparing hybrid reinforcements for AM that comprise short carbon fibers and nickel-based metal-organic frameworks (Ni-MOFs). The porous MOFs furnish the fibers with tremendous surface area. Additionally, the MOFs growth process is non-destructive to the fibers and easily scalable. This investigation also demonstrates the viability of using Ni-based MOFs as a catalyst for growing multi-walled carbon nanotubes (MWCNTs) on carbon fibers. The changes to the fiber were examined via electron microscopy, X-ray scattering techniques, and Fourier-transform infrared spectroscopy (FTIR). The thermal stabilities were probed by thermogravimetric analysis (TGA). Tensile and dynamic mechanical analysis (DMA) tests were utilized to explore the effect of MOFs on the mechanical properties of 3D-printed composites. Composites with MOFs exhibited improvements in stiffness and strength by 30.2% and 19.0%, respectively. The MOFs enhanced the damping parameter by 700%.

2.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580299

RESUMEN

In this investigation, multi-walled carbon nanotubes (MWCNTs) were grown over carbon fiber fabrics via a relatively nondestructive synthesis technique. The MWCNTs patches were grown into three different topologies: uniform, fine patterned and coarse patterned. Hybrid carbon fiber-reinforced polymer composites (CFRPs) were fabricated based on the patterned reinforcements. Tensile tests, dynamic mechanical thermal analyses (DMTA) and flexure load relaxation tests were carried out to investigate the effect of the patterned nano-reinforcement on the static, dynamic, glass transition, and viscoelastic performance of the hybrid composites. Results revealed that the hybrid composite based on fine-patterned topology achieved better performance over all other configurations as it exhibited about 19% improvement in both the strength and modulus over the reference composite with no MWCNTs. Additionally, the increase in glass transition for this composite was as high as 13%. The damping parameter (tan δ) was improved by 46%. The stress relaxation results underlined the importance of patterned MWCNTs in minimizing the stress decay at elevated temperatures and loading conditions. Utilizing patterned MWCNTs topology significantly reduced the stress decay percentage at the thermomechanical conditions 60 MPa and 75 °C from 16.7% to 7.8%. These improvements are attributed to both the enhanced adhesion and large interface area by placing MWCNTs and by inducing an interlocking mechanism that allows the interaction of the three constituents in load transfer, crack deflection and hindering undesired viscoelastic deformations under different thermomechanical loadings.

3.
J Nanosci Nanotechnol ; 18(6): 4182-4188, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442760

RESUMEN

Integrating nano-sized reinforcing materials into carbon fiber polymer composites (CFRPs) could enhance several aspects of their mechanical performance; e.g., interfacial strength, delamination resistance and vibrations attenuation. In this study, ZnO nanorods were grown on the surface of carbon fibers to create hybrid reinforcements. The hydrothermal synthesis of ZnO nanorods was tuned such that relatively long (>2.0 µm) nanorods can be grown. This synthesis technique requires pre-deposition of a thin seeding layer of ZnO particulates on the carbon fibers to initiate the ZnO nanorods growth. Depending on the method by which the seeding layer is deposited, the grown ZnO nanorods could display different morphologies. In this study, two different techniques were utilized to pre-deposit the ZnO seeding layer on the carbon fibers; ZnO nanoparticles/solution mixture airbrush spraying, and magnetron sputtering. The carbon fibers pre-coated with the airbrush spraying method yielded forests of randomly oriented ZnO nanorods, while the fibers pre-coated via the sputtering technique exhibited radially aligned ZnO nanorods forests. Hybrid CFRPs were fabricated based on the aforementioned carbon fiber fabrics and tested via 3-point bending dynamic mechanical analysis (DMA) and quasi-static tension tests. The loss tangent of the CFRPs, which delineates the damping capability, increased by 28% and 19% via radially and randomly grown ZnO nanorods, respectively. The in-plane tensile strength of the hybrid CFRPs were improved by 18% for the composites based on randomly oriented ZnO nanorods over the carbon fibers. The fractographs of the tension samples were also captured to reveal the role of the long ZnO nanorods in the in-plane performance of the hybrid CFRPs.

4.
Materials (Basel) ; 8(2): 474-485, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-28787951

RESUMEN

We report a novel method to pattern the stiffness of an elastomeric nanocomposite by selectively impeding the cross-linking reactions at desired locations while curing. This is accomplished by using a magnetic field to enforce a desired concentration distribution of colloidal magnetite nanoparticles (MNPs) in the liquid precursor of polydimethysiloxane (PDMS) elastomer. MNPs impede the cross-linking of PDMS; when they are dispersed in liquid PDMS, the cured elastomer exhibits lower stiffness in portions containing a higher nanoparticle concentration. Consequently, a desired stiffness pattern is produced by selecting the required magnetic field distribution a priori. Up to 200% variation in the reduced modulus is observed over a 2 mm length, and gradients of up to 12.6 MPa·mm-1 are obtained. This is a significant improvement over conventional nanocomposite systems where only small unidirectional variations can be achieved by varying nanoparticle concentration. The method has promising prospects in additive manufacturing; it can be integrated with existing systems thereby adding the capability to produce microscale heterogeneities in mechanical properties.

5.
Materials (Basel) ; 7(6): 4182-4195, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28788671

RESUMEN

Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD), in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures-from ethylene mixtures at 550 °C-on commercial polyacrylonitrile (PAN)-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD) technique was also utilized to grow multiwall CNTs (MWCNTs) on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

6.
Soft Matter ; 9(48): 11645-9, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25535628

RESUMEN

The drug delivery admissibility of nanomaterials such as carbon nanotubes and their uncertain interactions with live tissues and organs have sparked ongoing research efforts. To boost the selective diffusivity of single walled carbon nanotubes (SWCNTs), surface functionalization was adopted in several experimental attempts. Numerous studies had identified polyethylene glycol (PEG) as a bio-compatible surfactant to carbon nanotubes. In this study, a large scale, atomistic molecular dynamic simulation was utilized to disclose the cellular exposure and uptake mechanisms of PEG-functionalized single walled carbon nanotubes (f-SWCNTs) into a lipid bilayer cell membrane. Results showed that with PEGs attached to a SWCNT, the penetration depth and speed can be controlled. Also, the simulations revealed that the adhesion energy between the nanotube and the lipid membrane is affected considerably, in the presence of PEGs, by the chirality of the SWCNTs.

7.
Nano Lett ; 9(2): 751-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19152309

RESUMEN

We demonstrate that dispersion of single walled carbon nanotubes (SWNTs) by ultrasonication with phospholipid-polyethylene glycol (PL-PEG) fragments it, thus interfering with its ability to block nonspecific uptake by cells. However, unfragmented PL-PEG promoted specific cellular uptake of targeted SWNTs to two distinct classes of receptors expressed by cancer cells. Since fragmentation is a likely consequence of ultrasonication, a technique commonly used to disperse SWNTs, this maybe a concern for certain applications such as drug delivery.


Asunto(s)
Proteínas Portadoras/metabolismo , Receptores ErbB/metabolismo , Nanotubos de Carbono/química , Neoplasias/metabolismo , Neoplasias/patología , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Portadoras/química , Línea Celular Tumoral , Receptores ErbB/química , Receptores de Folato Anclados a GPI , Humanos , Receptores de Superficie Celular/química , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA