Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Life ; 17(6): 574-581, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39296435

RESUMEN

The mammalian gastrointestinal tract hosts a significant microbial symbiont community, an intriguing feature of this complex organ system. This study aimed to investigate the anti-inflammatory, antioxidant, and protective effects of caffeic acid phenethyl ester (CAPE) against Enterococcus faecalis infection in the stomach at a dose of 106 CFU in Swiss mice. A total of 30 mice were randomly assigned to three groups of ten mice each. Group I was the negative control, Group II was infected orally with E. faecalis for 18 days, and Group III was infected with E. faecalis and treated with CAPE orally at a daily dose of 4 mg/kg for 18 days. We assessed the antioxidant activities of stomach homogenate and the immunohistochemical expressions of the transcription factor nuclear factor kappa B (NF-κB) and proliferating cell nuclear antigen (PCNA). Histopathological examination was performed on the stomachs of all mice. Group II had decreased levels of antioxidant activity and positive expressions of NF-κB and PCNA. Histological observations revealed an increase in mucosal and glandular thickness compared with Group I. Group III, treated with CAPE, showed a significant increase in antioxidant activities and a significant decrease in NF-κB and PCNA immunoreactivities compared with Group II. In addition, Group III showed restoration of the normal thickness of the non-glandular and glandular parts of the stomach. Our results revealed that E. faecalis infection has damaging effects on the stomach and proved that CAPE has promising protective, anti-inflammatory, and antioxidant effects against E. faecalis. Further studies may investigate the potential therapeutic effects of CAPE against E. faecalis infection.


Asunto(s)
Antioxidantes , Ácidos Cafeicos , Enterococcus faecalis , FN-kappa B , Alcohol Feniletílico , Animales , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , FN-kappa B/metabolismo , Enterococcus faecalis/efectos de los fármacos , Ratones , Antioxidantes/farmacología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Estómago/patología , Estómago/efectos de los fármacos , Estómago/microbiología , Masculino , Antígeno Nuclear de Célula en Proliferación/metabolismo , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Mucosa Gástrica/microbiología , Mucosa Gástrica/metabolismo
2.
Food Sci Technol Int ; : 10820132231226258, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258334

RESUMEN

Foodborne microbial infections are leading cause of many deadly illnesses. As a result, there is an anticipated need for the development of innovative packaging materials with effective antibacterial potential. This article describes preparation and characterization of innovative ZnO@CeO2 nanocrystals through a facile hydrothermal method, as well as their outstanding antibacterial properties. The ZnO@CeO2 nanocrystals used were prepared using precursors zinc acetate and cerium nitrate at 180°C. Various sophisticated physicochemical parameters were used to assess nanocrystals. The antibacterial activity was examined using minimum inhibitory concentration technique against four major foodborne pathogenic bacteria, namely Staphylococcus aureus (Gram positive), Escherichia coli, Salmonella typhimurium and Klebsiella pneumoniae (Gram negative) at four distinct concentrations (0-400 µg/mL). The in vitro cell compatibility test was done on fibroblasts. According to our findings, the lowest concentration of ZnO@CeO2 nanocrystals limiting development of tested strains is 100 µg/mL. Additionally, the results show that the combination of ZnO and CeO2 can be synergistic, resulting in ZnO@CeO2 nanocrystals with enhanced antibacterial activity. To summarize, unique ZnO@CeO2 nanocrystals with a high surface-to-volume ratio with outstanding antibacterial activity and no harmful impact to mouse fibroblasts were shaped. The ZnO@CeO2 can be utilized to competently suppress microbial growth spoiling the food and could be utilized as economical and efficient future packaging material for food industries.

3.
Mycobiology ; 39(1): 40-4, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22783071

RESUMEN

Aspergillus fumigatus is associated with invasive disease aspergillosis in immunocompromised individuals. The major aim of this study was to investigate the biochemical and immunological responses of male Wistar rats against A. fumigatus experimentally-induced pulmonary fungal infection. Nostril experimental exposure of male Wistar rats to a high dose of A. fumigatus freeze-dried preparation for only 24 hr resulted in a significant increase in levels of catalase, nitric oxide and lipid peroxide in lung homogenates, compared to those of the control animals. However, the oxidative status of the lungs of rats challenged with killed fungus did not change significantly, except for the stimulation in the level of lipid peroxide. IgG level was significantly elevated only in rats that received two low doses of fungus, compared to unexposed animals (p<0.005). Examining the lung of rats exposed to A. fumigatus revealed no abnormal changes, except for pus in bronchial lumen spaces and per bronchial inflammation. Histologically, large numbers of granuloma cells were evident in the lungs of challenged rats, while no granuloma formation was evident in the lungs of rats exposed to killed fungus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA