Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35888505

RESUMEN

The presence of nitrates in water in large amounts is one of the most dangerous health issues. The greatest risk posed by nitrates is hemoglobin oxidation, which results in Methemoglobin in the human body, resulting in Methemoglobinemia. There are many ways to eliminate nitrates from underground water. One of the most effective and selective methods is using zero-valent iron (ZVI) nanoparticles. ZVI nanoparticles can be easily synthesized by reducing ferric or ferrous ions using sodium borohydride. The prepared ZVI nanoparticles were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and zeta potential. We aim to eliminate or reduce the nitrates in water to be at the acceptable range, according to the world health organization (WHO), of 10.0 mg/L. Nitrate concentration in water after and before treatment is measured using the UV scanning method at 220 nm wavelength for the synthetic contaminated water and electrochemical method for the naturally contaminated water. The conditions were optimized for obtaining an efficient removing process. The removal efficiency reaches about 91% at the optimized conditions.

2.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458747

RESUMEN

Drinking water containing nitrate ions at a higher concentration level of more than 10 mg/L, according to the World Health Organization (WHO), poses a considerable peril to humans. This danger lies in its reduction of nitrite ions. These ions cause methemoglobinemia during the oxidation of hemoglobin into methemoglobin. Many protocols can be applied to the remediation of nitrate ions from hydra solutions such as Zn metal and amino sulfonic acid. Furthermore, the electrochemical process is a potent protocol that is useful for this purpose. Designing varying parameters, such as the type of cathodic electrode (Sn, Al, Fe, Cu), the type of electrolyte, and its concentration, temperature, pH, and current density, can give the best conditions to eliminate the nitrate as a pollutant. Moreover, the use of accessible, functional, and inexpensive adsorbents such as granular ferric hydroxide, modified zeolite, rice chaff, chitosan, perlite, red mud, and activated carbon are considered a possible approach for nitrate removal. Additionally, biological denitrification is considered one of the most promising methodologies attributable to its outstanding performance. Among these powerful methods and materials exist zero-valent iron (ZVI), which is used effectively in the deletion process of nitrate ions. Non-precious synthesis pathways are utilized to reduce the Fe2+ or Fe3+ ions by borohydride to obtain ZVI. The structural and morphological characteristics of ZVI are elucidated using UV-Vis spectroscopy, zeta potential, XRD, FE-SEM, and TEM. The adsorptive properties are estimated through batch experiments, which are achieved to control the feasibility of ZVI as an adsorbent under the effects of Fe0 dose, concentration of NO3- ions, and pH. The obtained literature findings recommend that ZVI is an appropriate applicant adsorbent for the remediation of nitrate ions.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Hierro/química , Nitratos/análisis , Óxidos de Nitrógeno , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA