Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 29(5): 3654-3660, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844416

RESUMEN

Arid environments around the world are characterized by lower plant diversity. However, some specific locations have relatively high species richness and have significant importance in terms of vegetation structure and plant diversity. Jabal Al-Jandaf is located in an arid area within the eastern side of mountainous region in the southwest of Saudi Arabia. It consists of valleys, lower plain and upper plain habitats with unique and diverse vegetation. These habitats range from 1000 m above sea level near the Tarj valley to 1910 m at the summit. In this study, we conducted a first survey of the floristic diversity at Jandaf Mountain. Furthermore, we applied the criteria of the Important Plant Area (IPA) and the High Conservation Value (HCV) approaches to assess whether the plant community at Jandaf Mountain qualifies as a significant conservation area. We found that the study area has great plant diversity with plant composition varying among the different habitats (e.g., valleys, upper and lower elevations) within the study area. We recorded 118 species from 97 genera belonging to 42 families, including endemic (e.g. Aloe pseudorubroviolacea), near-endemic (e.g. Monolluma quadrangular), and endangered species (e.g. Dracaena serrulata, Combretum molle, and Moringa peregrine). The plant diversity at Jandaf Mountain achieves the criteria outlined in the IPA and HCV approaches. Therefore, we conclude that Jandaf Mountain has a unique vegetation structure, and the area qualifies for conservation as a high value area for biodiversity and conservation of global significance.

2.
Saudi J Biol Sci ; 28(2): 1433-1444, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33613071

RESUMEN

Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA