Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(48): e202402015, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926292

RESUMEN

The impact of various substituent moieties on the molecular framework of a conjugated D-A system in resistive switching memory property has been scrutinized through an array of novel D-π-A molecules. The synthesized molecules with triphenylamine (TPA) as the electron donor and dicyanovinylindanone (IC) as the electron acceptor demonstrated substantial non-volatile WORM (Write-Once Read-Many) memory behaviour with appreciable ON/OFF current ratios up to 105 and a lowest recorded threshold voltage of -0.80 V. The well-balanced combination of these potent electron donating and accepting units culminated in exceptional intramolecular charge transfer interactions and minimal band gap values (1.82-2.31 eV) for the molecules, as demonstrated by photophysical and electrochemical investigations. These factors, coupled with the thin-film morphological studies, corroborated the superior performance of the fabricated devices. A longer retention time of 2000s and an endurance of 100 cycles mark the substantial stability of the memory devices. Moreover, conversion from binary to ternary WORM memory was achieved by the effective tuning of the electronic properties of the D-A systems by various substituent moieties. Molecular simulation studies revealed that the resistive switching phenomenon arises from a synergistic interplay of charge transfer and charge trapping processes within these D-A systems.

2.
Chemphyschem ; 25(11): e202400062, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507519

RESUMEN

A series of novel D-π-A type organic small molecules have been designed, synthesized, and demonstrated for non-volatile resistive switching WORM memory application. The electron-deficient phenazine and quinoxaline units were coupled with various functionalized triphenylamine end caps to explore the structure-property correlations. The photophysical investigations displayed considerable intramolecular charge transfer, and the electrochemical analysis revealed an optimum band gap of 2.44 to 2.83 eV. These factors and the thin film morphological studies suggest the feasibility of the compounds as better resistive memory devices. All the compounds indicated potent non-volatile resistive switching memory capabilities with ON/OFF ratios ranging from 103 to 104, and the lowest threshold voltage recorded stands at -0.74 V. A longer retention time of 103 s marks the substantial stability of the devices. The phenazine-based compounds outperformed the others in terms of memory performance. Exceptionally, the compound with -CHO substituted triphenylamine exhibited ternary memory performance owing to its multiple traps. The resistive switching mechanism for the devices was validated using density functional theory calculations, which revealed that the integrated effect of charge transfer and charge trapping contributes significantly to the resistive switching phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA