Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068750

RESUMEN

Food labels are low-cost, informational tools that can help curb the spread of diet-related non-communicable diseases. This study described consumers' knowledge, attitudes, and practices related to food labels in Jordan and explored the relationship between knowledge and attitude with comprehensive use of food labels. A cross-sectional, online survey assessed Jordanian adult consumers' ability to comprehend the nutritional contents of food labels (knowledge score), their attitudes towards food labels (attitude scale), and how frequently they used different parts of food labels (practice scale). Multivariate logistic regression models assessed predictors of comprehensive use of food labels. A total of 939 adults participated in the study. Total mean scores for the practice scale (14 questions), attitude scale (8 questions), and knowledge score (4 questions) were 49.50 (SD, 11.36; min, 5; max, 70), 29.70 (SD, 5.23; min, 5; max, 40), and 1.39 (SD, 1.33; min, 0; max, 4), respectively. Comprehensive users of food labels (26.4%) were more likely female, responsible for grocery shopping, and had higher mean knowledge and attitude scores. Jordanian consumers seem to have good practices and attitudes related to food label use but suboptimal knowledge regarding content. Future interventions should focus more on enhancing knowledge and awareness related to food labels.


Asunto(s)
Dieta , Conocimientos, Actitudes y Práctica en Salud , Humanos , Femenino , Jordania , Estudios Transversales , Alimentos , Etiquetado de Alimentos
2.
Int J Pharm Compd ; 27(5): 431-439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37816185

RESUMEN

This study aimed to develop controlled-release matrix tablets of naproxen using the hydrophilic polymer sodium carboxymethylcellulose, investigate the impact of surfactants and other excipients on drug release and swelling rate, and determine the drug release mechanism. Naproxen matrices were formulated by the direct compression technique with different ratios of polymer sodium carboxymethylcellulose and other excipients. Drug release, swelling behavior, and release mechanism were assessed using an acidic dissolution medium. Drug release rate and mechanism were characterized by fitting the zero-order, first-order, Higuchi, and Korsmeyer-Peppas models. The amount of polymer sodium carboxymethylcellulose and other additives significantly affected drug release by regulating its rate according to polymer sodium carboxymethylcellulose ratios. Surfactants increased the drug release based on their solubility and wetting effects, independent of their charges. The release mechanism involved a combination of polymer diffusion and tablet erosion during dissolution. This study demonstrated that controlled release matrix tablets of naproxen can be effectively prepared by incorporating polymer sodium carboxymethylcellulose and other excipients via direct compression. The quantity of excipients can be adjusted to control the drug release rate from the matrices. The dissolution medium and the surfactants did not affect the matrix swelling, while the surfactants increased drug release via solubility and wetting effects rather than their charge. These findings have important implications for the design and development of controlled-release drug delivery systems.


Asunto(s)
Excipientes , Polímeros , Naproxeno , Preparaciones de Acción Retardada , Carboximetilcelulosa de Sodio , Tensoactivos , Química Farmacéutica , Solubilidad , Comprimidos
3.
Drug Dev Ind Pharm ; 49(8): 508-520, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37530565

RESUMEN

OBJECTIVE: This study aims to investigate the acute and chronic adverse effects of ∼50 nm (nanometer) gold nanoparticles (AuNPs) synthesized using Ziziphus zizyphus leaf extract in mice. SIGNIFICANCE: AuNPs have shown promise for medical applications, but their safety and biocompatibility need to be addressed. Understanding the potential adverse effects of AuNPs is crucial to ensure their safe use in medical applications. METHODS: The ∼50 nm AuNPs were synthesized using Ziziphus zizyphus leaf extract and characterized using scanning electron microscopy, dynamic light scattering, and zeta potential analysis. Mice were subjected to a single intraperitoneal injection of AuNPs at a dose of 1 g/mg (grams per milligram) or a daily dose of 1 mg/kg for 28 days. Various parameters, including gold bioaccumulation, survival, behavior, body weight, and blood glucose levels, were measured. Histopathological changes and organ indices were assessed. RESULTS: Gold levels in the blood and heart did not significantly increase with daily administration of AuNPs. However, there were proportional increases in gold content observed in the liver, spleen, and kidney, indicating effective tissue uptake. Histopathological alterations were predominantly observed in the kidney, suggesting potential tissue injury. CONCLUSIONS: The findings of this study indicate that ∼50 nm AuNPs synthesized using Z. zizyphus leaf extract can induce adverse effects, particularly in the kidney, in mice. These results highlight the importance of addressing safety concerns when using AuNPs in medical applications. Further investigations that encompass a comprehensive set of toxicological parameters are necessary to confirm the long-term adverse effects of AuNP exposure.


Asunto(s)
Oro , Nanopartículas del Metal , Ratones , Animales , Oro/toxicidad , Nanopartículas del Metal/toxicidad , Riñón , Hígado , Extractos Vegetales/toxicidad
4.
Toxics ; 11(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36668789

RESUMEN

Sex hormone disruptors (xenoestrogens) are a global concern due to their potential toxicity. However, to date, there has been no study to investigate the presence of xenoestrogen pollutants in the Jordanian water system. Samples in triplicates were collected from six locations in Jordan, including dams, surface water, tap or faucet water, and filtered water (drinking water-local company). Xenoestrogens were then extracted and evaluated with a yeast estrogen screen utilizing Saccharomyces cerevisiae. Later, possible pollutants were mined using ultrahigh-performance liquid chromatography (UPLC) coupled with a Bruker impact II Q-TOF-MS. Possible hits were identified using MetaboScape software (4000 compounds), which includes pesticide, pharmaceutical pollutant, veterinary drug, and toxic compound databases and a special library of 75 possible xenoestrogens. The presence of xenoestrogens in vegetable samples collected from two different locations was also investigated. The total estrogen equivalents according to the YES system were 2.9 ± 1.2, 9.5 ± 5, 2.5 ± 1.5, 1.4 ± 0.9 ng/L for King Talal Dam, As-Samra Wastewater Treatment Plant, King Abdullah Canal, and tap water, respectively. In Almujeb Dam and drinking water, the estrogenic activity was below the detection limit. Numbers of identified xenoestrogens were: As-Samra Wastewater Treatment Plant 27 pollutants, King Talal Dam 20 pollutants, Almujeb Dam 10 pollutants, King Abdullah Canal 16 pollutants, Irbid tap water 32 pollutants, Amman tap water 30 pollutants, drinking water 3 pollutants, and vegetables 7 pollutants. However, a large number of compounds remained unknown. Xenoestrogen pollutants were detected in all tested samples, but the total estrogenic capacities were within the acceptable range. The major source of xenoestrogen pollutants was agricultural resources. Risk evaluations for low xenoestrogen activity should be taken into account, and thorough pesticide monitoring systems and regular inspections should also be established.

5.
Nanomaterials (Basel) ; 11(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807206

RESUMEN

Vitamin D deficiency is a global issue which has been exacerbated by the COVID-19 pandemic-related lockdowns. Fortification of food staples with vitamin D provides a solution to alleviate this problem. This research explored the use of pea protein nanoemulsion (PPN) to improve the stability of vitamin D in various food products. PPN was created using a pH-shifting and ultrasonication combined method. The physicochemical properties were studied, including particle size, foaming ability, water holding capacity, antioxidant activity, and total phenolic contents. The fortification of several food formulations (non-fat cow milk, canned orange juice, orange juice powder, banana milk, and infant formula) with vitamin D-PPN was investigated and compared to raw untreated pea protein (UPP) regarding their color, viscosity, moisture content, chemical composition, vitamin D stability, antioxidant activity, and morphology. Finally, a sensory evaluation (quantitative descriptive analysis, and consumer testing) was conducted. The results show that PPN with a size of 21.8 nm protected the vitamin D in all tested products. PPN may serve as a potential carrier and stabilizer of vitamin D in food products with minimum effects on the taste and color. Hence, PPN may serve as a green and safe method for food fortification during the COVID-19 pandemic.

6.
J Health Pollut ; 10(27): 200906, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32874762

RESUMEN

BACKGROUND: Air pollution poses a significant threat to human health worldwide. Investigating potential health impacts is essential to the development of regulations and legislation to minimize health risks. OBJECTIVES: The aim of the present study was to investigate the potentially hazardous effect of air pollution on the Ali Sabah Al Salem residential area in Kuwait by comparing the pollution level to a control area (Al-Qirawan) by assessing two biomarkers: erythrocyte glutathione S-transferases (e-GST) and total blood antioxidant, and then correlating the activity to pollution-related oxidative stress. METHODS: The average concentrations of several airborne gases were measured at Ali Sabah Al Salem and Al-Qirawan, including ozone, carbon monoxide, nitrogen dioxide, nitrogen oxides, particulate matter less than 10 µm (PM10), sulfur dioxide, ammonia, carbon dioxide, hydrogen sulfide, methane, and non-methane hydrocarbon. A total of fifty-eight participants were sampled from two different areas and divided into two groups. The study group was composed of 40 residents exposed to polluted ambient air in the Ali Sabah Al Salem residential area. A reference group composed of 18 residents in the Al-Qairawan area living far from major pollution sources was also tested. RESULTS: All measured gases were higher in concentration at Ali Sabah Al Salem compared to the Al-Qirawan area. Furthermore, PM10 and sulfur dioxide were higher than World Health Organization (WHO) guidelines. The e-GST activity was lower among participants of the Ali Sabah Al Salem residential area compared to participants living in the Al-Qairawan area. The total antioxidant capacity in whole blood of Ali Sabah Al Salem residents was significantly (p<0.0001) higher than in control subjects. CONCLUSIONS: Residents in Ali Sabah Al Salem are exposed to a high level of air pollution that has a serious impact on glutathione S-transferases levels. Subsequently, regulations on pollution sources are needed to lower current health risks. Furthermore, the present study provides evidence that finger-prick blood sampling is a quick, non-invasive method suitable for screening e-GST activity and total antioxidants which may be applied for surveillance purposes. PARTICIPANT CONSENT: Obtained. ETHICS APPROVAL: The study was approved by the Scientific Research Committee of the Public Authority for Applied Education and Training, Kuwait. COMPETING INTERESTS: The authors declare no competing financial interests.

7.
Artículo en Inglés | MEDLINE | ID: mdl-32610554

RESUMEN

Background: Electromagnetic pollution is a general health concern worldwide, as cell phone towers are ubiquitous and are located adjacent to or on the roof of schools, and hospitals. However, the health risks are still inconclusive. This cross-sectional study evaluated the potential effect of electromagnetic radiation generated from various resources including cell phone towers on blood glutathione S transferase activity (e-GST) and total antioxidant activity of the Jordanian population. Methods: The power density of three districts in the city of Irbid, Jordan was mapped to generate "outside the houses" and "inside the houses" maps. The effect of categorical variables (gender, using a cell phone, presence of Wi-Fi modem, previous exposure to medical imaging) and continuous variables (distance from the base station, the elevation of the house, the duration of stay in the house, power density outside houses, power density inside houses) on e-GST and total antioxidant activity were investigated. Results: The EMR generated outside the houses-including cell phone towers-did not reach inside the houses at the same power and had no significant influence on e-GST activity. The EMR inside the house, which primarily came from internal resources, has a significant effect on e-GST activity. The duration of stay inside the house, the use of cell phones, and the presence of a Wi-Fi modem had a proportional effect on e-GST activity. The total antioxidant activity was statistically equal between the tested and control groups. Conclusions: Several factors such as building materials restricted the penetration of EMR reaching inside the houses. EMR generated inside rather than outside the houses had a proportional effect on e-GST. The differences in e-GST were compensated successfully by other antioxidant mechanisms. Further research is needed to identify other possible sources of antioxidants, and to evaluate long-term effects and genetic polymorphism.


Asunto(s)
Teléfono Celular , Radiación Electromagnética , Estrés Oxidativo/fisiología , Ondas de Radio/efectos adversos , Biomarcadores/metabolismo , Estudios Transversales , Femenino , Humanos , Jordania , Masculino
8.
Nanomaterials (Basel) ; 8(3)2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29562669

RESUMEN

(1) Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2) Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of "greener" protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs) using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3) Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM), Scanning electron microscope (SEM), and Atomic Force microscopy (AFM), X-ray diffraction (XRD), UV-visible spectroscopy, energy dispersive X-ray (EDX), and thermogravimetric analyses (TGA); (4) Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents.

9.
Gene ; 449(1-2): 50-8, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19782733

RESUMEN

Drosophila basigin is a cell-surface glycoprotein of the Ig superfamily and a member of a protein family that includes mammalian EMMPRIN/CD147/basigin, neuroplastin, and embigin. Our previous work on Drosophila basigin has shown that it is required for normal photoreceptor cell structure and normal neuron-glia interaction in the fly visual system. Specifically, the photoreceptor neurons of mosaic animals that are mutant in the eye for basigin show altered cell structure with nuclei, mitochondria and rER misplaced and variable axon diameter compared to wild-type. In addition, glia cells in the optic lamina that contact photoreceptor axons are misplaced and show altered structure. All these defects are rescued by expression of either transgenic fly basigin or transgenic mouse basigin in the photoreceptors demonstrating that mouse basigin can functionally replace fly basigin. To determine what regions of the basigin protein are required for each of these functions, we have created mutant basigin transgenes coding for proteins that are altered in conserved residues, introduced these into the fly genome, and tested them for their ability to rescue both photoreceptor cell structure defects and neuron-glia interaction defects of basigin. The results suggest that the highly conserved transmembrane domain and the extracellular domains are crucial for basigin function in the visual system while the short intracellular tail may not play a role in these functions.


Asunto(s)
Basigina/genética , Drosophila melanogaster/fisiología , Mutación , Visión Ocular , Secuencia de Aminoácidos , Animales , Basigina/química , Western Blotting , Drosophila melanogaster/genética , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA