Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668620

RESUMEN

Molecular motors are microtubule-based proteins which contribute to many cell functions, such as intracellular transportation and cell division. The details of the nature of the mutual interactions between motors and microtubules still needs to be extensively explored. However, electrostatic interaction is known as one of the key factors making motor-microtubule association possible. The association rate of molecular motors to microtubules is a way to observe and evaluate the charge of the bio-motors in vivo. Growing evidence indicates that microtubules with distinct structural compositions in terms of beta tubulin isotypes carry different charges. Therefore, the electrostatic-driven association rate of motors-microtubules, which is a base for identifying the charge of motors, can be more likely influenced. Here, we present a novel method to experimentally confirm the charge of molecular motors in vitro. The offered nanotechnology-based approach can validate the charge of motors in the absence of any cellular components through the observation and analysis of the changes that biomolecular motors can cause on the dynamic of charged microspheres inside a uniform electric field produced by a microscope slide-based nanocapacitor. This new in vitro experimental method is significant as it minimizes the intracellular factors that may interfere the electric charge that molecular motors carry.


Asunto(s)
Cinesinas/química , Proteínas Motoras Moleculares/química , Nanotecnología/métodos , Humanos , Técnicas In Vitro , Microesferas , Nanotecnología/instrumentación , Electricidad Estática
2.
Biochem Biophys Rep ; 17: 151-156, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30671547

RESUMEN

Growing evidence continues to point toward the critical role of beta tubulin isotypes in regulating some intracellular functions. Changes that were observed in the microtubules' intrinsic dynamics, the way they interact with some chemotherapeutic agents, or differences on translocation specifications of some molecular motors along microtubules, were associated to their structural uniqueness in terms of beta tubulin isotype distributions. These findings suggest that the effects of microtubule associated proteins (MAPs) may also vary on structurally different microtubules. Among different microtubule associated proteins, Tau proteins, which are known as neuronal MAPs, bind to beta tubulin, stabilize microtubules, and consequently promote their polymerizations. In this study, in a set of well controlled experiments, the direct effect of Tau proteins on the polymerization of two structurally different microtubules, porcine brain and breast cancer (MCF7), were tested and compared. Remarkably, we found that in contrast with the promoted effect of Tau proteins on brain microtubules' polymerization, MCF7 expressed a demoted polymerization while interacting with Tau proteins. This finding can potentially be a novel insight into the mechanism of drug resistance in some breast cancer cells. It has been reported that microtubules show destabilizing behavior in some MCF7 cells with overexpression of Tau protein when treated with a microtubules' stabilizing agent, Taxol. This behavior has been classified by others as drug resistance, but it may instead be potentially caused by a competition between the destabilizing effect of the Tau protein and the stabilizing effect of the drug on MCF7 microtubules. Also, we quantified the polarization coefficient of MCF7 microtubules in the presence and absence of Tau proteins by the electro-orientation method and compared the values. The two significantly different values obtained can possibly be one factor considered to explain the effect of Tau proteins on the polymerization of MCF7 microtubules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA