RESUMEN
Occupational exposure to toxic elements can adversely affect health. The current study evaluated blood concentrations of potentially toxic elements (PTE) including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, and Zn in formal and informal workers. Additionally, the study investigated the associations between blood PTE concentrations and reported health outcomes in the study population. The exposed group included women engaged in informal jewelry welding within their homes in Limeira, São Paulo state, Brazil (n = 36) and men who worked at a steel company in Volta Redonda, Rio de Janeiro state, Brazil (n = 22). The control group comprised residents of the same neighborhoods as the workers but without occupational exposure to chemicals (n = 28 in Limeira; n = 27 in Volta Redonda). Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry (TQ ICP-MS) was used to determine PTE concentrations in blood samples. Glycemia, insulin, and lipid profile tests were performed. All participants completed questionnaires on household risk and reported morbidity. The blood concentrations of Cd, As, and Pb, as well as glycemia, were higher in informal workers than in control subjects. No significant differences were observed between formal workers and control subjects. A robust Poisson regression model, adjusted for variables suggested by a Directed Acyclic Graph, disclosed associations of blood lead and arsenic concentrations with the prevalence of neurological manifestations in Limeira. Blood lead levels > 2.6 µg dL-1 were associated with 2.3 times the prevalence of self-reported neurological manifestations (95 % CI: 1.17-4.58; p = 0.02) than lower blood lead concentrations. Furthermore, a positive association between blood cadmium concentrations and glycemia was observed. Informal occupational exposure to these elements may indicate an increased risk of developing diseases. Monitoring exposure and implementing interventions to reduce PTE exposure in the work environment represent significant steps toward prevention.
Asunto(s)
Exposición Profesional , Humanos , Brasil/epidemiología , Exposición Profesional/estadística & datos numéricos , Masculino , Femenino , Adulto , Autoinforme , Persona de Mediana Edad , Arsénico/sangre , Arsénico/análisisRESUMEN
Lignin is a natural polymer containing diverse functional groups and displaying an affinity for metals. Kraft lignin can be used as a carbon source, as a cleaving lignin structure for aromatic macromers or in the addition and modification of functional groups by the development of new active chemical sites. In this context, the aim of the present study is to investigate the adsorption of mono and multi-element metals solutions on lignin derivatives (unmodified Kraft lignin, acetylated Kraft lignin, charcoal Kraft lignin and activated carbon Kraft lignin). Parameters that affect adsorption processes, such as pH, contact time and adsorbent dose, were optimized in each case. The best adsorption condition was obtained at pH 7.00, a contact time of 120 min and with adsorbent dose of 30 mg. Also, unmodified Kraft lignin shows high adsorption selectivity (99%) for gold and palladium in acidic solutions. Acetylated and charcoal Kraft lignin resulted in lower adsorption levels in comparison with unmodified Kraft lignin. Activated carbon, however, reached adsorptions of over 86% for all metals. Finally, unmodified Kraft lignin impregnated with palladium presents a promising heterogeneous support in the Suzuki-Miyaura reaction.