Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (175)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34633379

RESUMEN

The pancreatic ß-cells sustain systemic glucose homeostasis by producing and secreting insulin according to the blood glucose levels. Defects in ß-cell function are associated with hyperglycemia that can lead to diabetes. During the process of insulin secretion, ß-cells experience an influx of Ca2+. Thus, imaging the glucose-stimulated Ca2+ influx using genetically encoded calcium indicators (GECIs) provides an avenue to studying ß-cell function. Previously, studies showed that isolated zebrafish islets expressing GCaMP6s exhibit significant Ca2+ activity upon stimulation with defined glucose concentrations. However, it is paramount to study how ß-cells respond to glucose not in isolation, but in their native environment, where they are systemically connected, vascularized, and densely innervated. To this end, the study leveraged the optical transparency of the zebrafish larvae at early stages of development to illuminate ß-cell activity in vivo. Here, a detailed protocol for Ca2+ imaging and glucose stimulation to investigate ß-cell function in vivo is presented. This technique allows to monitor the coordinated Ca2+ dynamics in ß-cells with single-cell resolution. Additionally, this method can be applied to work with any injectable solution such as small molecules or peptides. Altogether, the protocol illustrates the potential of the zebrafish model to investigate islet coordination in vivo and to characterize how environmental and genetic components might affect ß-cell function.


Asunto(s)
Calcio , Células Secretoras de Insulina , Animales , Calcio/metabolismo , Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA