Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 3): 135316, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236953

RESUMEN

Application of fertilizers is a routine method in agriculture to increase the fertility of plants However, conventional fertilizers have raised serious health and environmental problems in recent years. Therefore, the development of biodegradable superabsorbent hydrogels based on natural polymers with the capability for fertilizer controlled release has attracted much interest. In the current research, a novel nanocomposite hydrogel based on gelatin and carboxymethyl cellulose polymers enriched with an iron based metal- organic framework (MIL-53 (Iron)) was prepared. The prepared nanocomposite hydrogel was loaded with NPK fertilizer to obtain a slow release fertilizer system. The structural properties of the nanocomposite hydrogel were investigated using FTIR, XRD, and SEM techniques. The swelling and fertilizer release behavior of the nanocomposite hydrogel were evaluated in conditions. Results showed that by adding iron-based metal organic framework to the hydrogel matrix, the water absorption capacity of the hydrogel system was increased to 345.8 (g/g). Fertilizer release studies revealed that the release of fertilizer from the nanocomposite matrix has a slow and continuous release pattern. Therefore, the synthesized nanocomposite has an appropriate strength and high potential to be used as a slow-release fertilizer system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA