Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 184(2): 147-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24055609

RESUMEN

The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved 'lysine bridge' constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20-50 times reduced activity, supporting the functional importance of the 'lysine bridge'.


Asunto(s)
Proteínas Bacterianas/química , Klebsiella pneumoniae/enzimología , Oxigenasas de Función Mixta/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/ultraestructura , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Tioléster Hidrolasas
2.
J Biol Chem ; 287(45): 37986-96, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22961985

RESUMEN

Microbial anaerobic and so-called hybrid pathways for degradation of aromatic compounds contain ß-oxidation-like steps. These reactions convert the product of the opening of the aromatic ring to common metabolites. The hybrid phenylacetate degradation pathway is encoded in Escherichia coli by the paa operon containing genes for 10 enzymes. Previously, we have analyzed protein-protein interactions among the enzymes catalyzing the initial oxidation steps in the paa pathway (Grishin, A. M., Ajamian, E., Tao, L., Zhang, L., Menard, R., and Cygler, M. (2011) J. Biol. Chem. 286, 10735-10743). Here we report characterization of interactions between the remaining enzymes of this pathway and show another stable complex, PaaFG, an enoyl-CoA hydratase and enoyl-Coa isomerase, both belonging to the crotonase superfamily. These steps are biochemically similar to the well studied fatty acid ß-oxidation, which can be catalyzed by individual monofunctional enzymes, multifunctional enzymes comprising several domains, or enzymatic complexes such as the bacterial fatty acid ß-oxidation complex. We have determined the structure of the PaaFG complex and determined that although individually PaaF and PaaG are similar to enzymes from the fatty acid ß-oxidation pathway, the structure of the complex is dissimilar from bacterial fatty acid ß-oxidation complexes. The PaaFG complex has a four-layered structure composed of homotrimeric discs of PaaF and PaaG. The active sites of PaaF and PaaG are adapted to accept the intermediary components of the Paa pathway, different from those of the fatty acid ß-oxidation. The association of PaaF and PaaG into a stable complex might serve to speed up the steps of the pathway following the conversion of phenylacetyl-CoA to a toxic and unstable epoxide-CoA by PaaABCE monooxygenase.


Asunto(s)
Isomerasas de Doble Vínculo Carbono-Carbono/química , Enoil-CoA Hidratasa/química , Proteínas de Escherichia coli/química , Fenilacetatos/química , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Dodecenoil-CoA Isomerasa , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microscopía Electrónica , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Operón/genética , Oxidación-Reducción , Fenilacetatos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Agua/química , Agua/metabolismo
3.
Biochem Biophys Res Commun ; 404(4): 1093-8, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21195693

RESUMEN

The lipopolysaccharide transport system (Lpt) in Gram-negative bacteria is responsible for transporting lipopolysaccharide (LPS) from the cytoplasmic surface of the inner membrane, where it is assembled, across the inner membrane, periplasm and outer membrane, to the surface where it is then inserted in the outer leaflet of the asymmetric lipid bilayer. The Lpt system consists of seven known LPS transport proteins (LptA-G) spanning from the cytoplasm to the cell surface. We have shown that the periplasmic component, LptA is able to form a stable complex with the inner membrane anchored LptC but does not interact with the outer membrane anchored LptE. This suggests that the LptC component of the LptBFGC complex may act as a dock for LptA, allowing it to bind LPS after it has been assembled at the inner membrane. That no interaction between LptA and LptE has been observed supports the theory that LptA binds LptD in the LptDE homodimeric complex at the outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Modelos Biológicos , Multimerización de Proteína
4.
J Biol Chem ; 286(12): 10735-43, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21247899

RESUMEN

The utilization of phenylacetic acid (PA) in Escherichia coli occurs through a hybrid pathway that shows features of both aerobic and anaerobic metabolism. Oxygenation of the aromatic ring is performed by a multisubunit phenylacetyl-coenzyme A oxygenase complex that shares remote homology of two subunits to well studied bacterial multicomponent monooxygenases and was postulated to form a new bacterial multicomponent monooxygenase subfamily. We expressed the subunits PaaA, B, C, D, and E of the PA-CoA oxygenase and showed that PaaABC, PaaAC, and PaaBC form stable subcomplexes that can be purified. In vitro reconstitution of the oxygenase subunits showed that each of the PaaA, B, C, and E subunits are necessary for catalysis, whereas PaaD is not essential. We have determined the crystal structure of the PaaAC complex in a ligand-free form and with several CoA derivatives. We conclude that PaaAC forms a catalytic core with a monooxygenase fold with PaaA being the catalytic α subunit and PaaC, the structural ß subunit. PaaAC forms heterotetramers that are organized very differently from other known multisubunit monooxygenases and lacks their conservative network of hydrogen bonds between the di-iron center and protein surface, suggesting different association with the reductase and different mechanisms of electron transport. The PaaA structure shows adaptation of the common access route to the active site for binding a CoA-bound substrate. The enzyme-substrate complex shows the orientation of the aromatic ring, which is poised for oxygenation at the ortho-position, in accordance with the expected chemistry. The PA-CoA oxygenase complex serves as a paradigm for the new subfamily multicomponent monooxygenases comprising several hundred homologs.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Oxigenasas de Función Mixta/química , Complejos Multiproteicos/química , Subunidades de Proteína/química , Cristalografía por Rayos X , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
5.
Artículo en Inglés | MEDLINE | ID: mdl-20823522

RESUMEN

The Escherichia coli paa operon encodes enzymes of the phenylacetic acid-utilization pathway that metabolizes phenylacetate in the form of a coenzyme A (CoA) derivative. The phenylacetyl-coenzyme A oxygenase complex, which has been postulated to contain five components designated PaaABCDE, catalyzes ring hydroxylation of phenylacetyl-CoA. The PaaAC subcomplex shows low sequence similarity to other bacterial multicomponent monooxygenases (BMMs) and forms a separate branch on the phylogenetic tree. PaaAC, which catalyzes the hydroxylation reaction, was purified and crystallized in the absence of a bound ligand as well as in complexes with CoA, 3-hydroxybutyryl-CoA, benzoyl-CoA and the true substrate phenylacetyl-CoA. Crystals of the ligand-free enzyme belonged to space group P2(1)2(1)2(1) and diffracted to 2.65 A resolution, whereas complexes with CoA and its derivatives crystallized in space group P4(1)2(1)2 and diffracted to approximately 2.0 A resolution. PaaAC represents the first crystallized BMM hydroxylase that utilizes a CoA-linked substrate.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Oxigenasas de Función Mixta/química , Cristalización , Cristalografía por Rayos X , Unión Proteica , Especificidad por Sustrato
6.
J Bacteriol ; 190(24): 8137-44, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18849419

RESUMEN

Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of l-ascorbate under anaerobic conditions. UlaD catalyzes a beta-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel beta-strands. The enzyme binds Zn(2+), which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the beta1/alpha1 loop and alpha3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands beta7 and beta8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.


Asunto(s)
Escherichia coli O157/enzimología , Proteínas de Escherichia coli/metabolismo , Pentosafosfatos/metabolismo , Racemasas y Epimerasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Racemasas y Epimerasas/genética , Alineación de Secuencia , Especificidad por Sustrato , Zinc/metabolismo
7.
Nat Struct Mol Biol ; 15(2): 130-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18204465

RESUMEN

The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 A into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal for its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/química , Salmonella typhimurium/enzimología , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli O157/química , Proteínas de Escherichia coli/genética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Polisacáridos Bacterianos/biosíntesis , Conformación Proteica , Salmonella typhimurium/química , Eliminación de Secuencia
8.
J Biol Chem ; 281(13): 8907-16, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16421095

RESUMEN

Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. Because motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-alpha-D-Glc-NAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-beta-L-AltNAc product, the latter being converted to the external aldimine form in the active site of the enzyme. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation, which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the beta-L-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and, in conjunction with the recent functional characterization of this enzyme, these results will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Helicobacter pylori/enzimología , Transaminasas/química , Transaminasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Dimerización , Electroforesis Capilar , Electroforesis en Gel de Poliacrilamida , Glicosilación , Helicobacter pylori/genética , Helicobacter pylori/crecimiento & desarrollo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Luz , Lisina/metabolismo , Modelos Biológicos , Modelos Moleculares , Estructura Molecular , Mutagénesis Insercional , Mutación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Fosfato de Piridoxal/metabolismo , Dispersión de Radiación , Espectrometría Raman , Especificidad por Sustrato , Transaminasas/aislamiento & purificación
9.
J Biol Chem ; 280(52): 42919-28, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16253988

RESUMEN

Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 A resolution, respectively. YdiF is organized into tetramers, with each monomer having an open alpha/beta structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent gamma-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.


Asunto(s)
Coenzima A Transferasas/química , Coenzima A/química , Cristalografía por Rayos X/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Ésteres/química , Ácido Glutámico/química , Sitios de Unión , Ácidos Carboxílicos/química , Catálisis , Dominio Catalítico , Cromatografía en Gel , Clonación Molecular , Coenzima A Transferasas/metabolismo , Cristalización , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Histidina/química , Espectrometría de Masas , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA