Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35567192

RESUMEN

Unlike typical negative gravitropic curvature, young hypocotyls of Brassica rapa and other dicots exhibit positive gravitropism. This positive curvature occurs at the base of the hypocotyl and is followed by the typical negative gravity-induced curvature. We investigated the role of auxin in both positive and negative hypocotyl curvature by examining the transcription of PIN1, PIN3, IAA5 and ARG1 in curving tissue. We compared tissue extraction of the convex and concave flank with Solid Phase Gene Extraction (SPGE). Based on Ubiquitin1 (UBQ1) as a reference gene, the log (2) fold change of all examined genes was determined. Transcription of the examined genes varied during the graviresponse suggesting that these genes affect differential elongation. The transcription of all genes was upregulated in the lower flank and downregulated in the upper flank during the initial downward curving period. After 48 h, the transcription profile reversed, suggesting that the ensuing negative gravicurvature is controlled by the same genes as the positive gravicurvature. High-spatial resolution profiling using SPGE revealed that the transcription profile of the examined genes was spatially distinct within the curving tissue. The comparison of the hypocotyl transcription profile with the root tip indicated that the tip tissue is a suitable reference for curving hypocotyls and that root and hypocotyl curvature are controlled by the same physiological processes.

2.
Plant Sci ; 285: 214-223, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203886

RESUMEN

Main Conclusion Root gravitropism of primary roots is assisted by curvature of the hypocotyl base. Root gravitropism is typically described as the sequence of signal perception, signal processing, and response that causes differential elongation and the establishment of a new gravitropic set-point angle. We describe two components of the graviresponse of Brassica seedlings that comprise a primary curvature of the root tip and a later onset but stronger curvature that occurs at the base of the hypocotyl. This second curvature is preceded by straightening of the tip region but leads to the completion of the alignment of the root axis. Curvature in both regions require a minimum displacement of 20 deg. The rate of tip curvature is a function of root length. After horizontal reorientation, tip curvature of five mm long roots curved twice as fast as 10 mm long roots (33.6 ±â€¯3.3 vs. 14.3 ±â€¯1.5 deg hr-1). The onset of curvature at the hypocotyl base is correlated with root length, but the rate of this curvature is independent of seedling length. Decapping of roots prevented tip curvature but the curvature at base of hypocotyl was unaffected. Endodermal cells at the root shoot junction show numerous, large and sedimenting amyloplasts, which likely serve as gravity sensors (statoliths). The amyloplasts at the hypocotyl were 3-4 µm in diameter, similar in size to those in the root cap, and twice the size of starch grains in the cortical layers of hypocotyl or elsewhere in the root. These data indicate that the root shoot reorientation of young seedlings is not limited to the root tip but includes more than one gravitropically responsive region.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Gravitropismo , Hipocótilo/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Brassica rapa/fisiología , Hipocótilo/fisiología , Cápsula de Raíz de Planta/crecimiento & desarrollo , Cápsula de Raíz de Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA