Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514458

RESUMEN

The assimilation of radiometer and synthetic aperture radar (SAR) data is a promising recent technique to downscale soil moisture products, yet it requires land surface parameters and meteorological forcing data at a high spatial resolution. In this study, we propose a new downscaling approach, named integrated passive and active downscaling (I-PAD), to achieve high spatial and temporal resolution soil moisture datasets over regions without detailed soil data. The Advanced Microwave Scanning Radiometer (AMSR-E) and Phased Array-type L-band SAR (PALSAR) data are combined through a dual-pass land data assimilation system to obtain soil moisture at 1 km resolution. In the first step, fine resolution model parameters are optimized based on fine resolution PALSAR soil moisture and moderate-resolution imaging spectroradiometer (MODIS) leaf area index data, and coarse resolution AMSR-E brightness temperature data. Then, the 25 km AMSR-E observations are assimilated into a land surface model at 1 km resolution with a simple but computationally low-cost algorithm that considers the spatial resolution difference. Precipitation data are used as the only inputs from ground measurements. The evaluations at the two lightly vegetated sites in Mongolia and the Little Washita basin show that the time series of soil moisture are improved at most of the observation by the assimilation scheme. The analyses reveal that I-PAD can capture overall spatial trends of soil moisture within the coarse resolution radiometer footprints, demonstrating the potential of the algorithm to be applied over data-sparse regions. The capability and limitation are discussed based on the simple optimization and assimilation schemes used in the algorithm.

2.
Remote Sens Environ ; 214: 1-13, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32601510

RESUMEN

Global-scale surface soil moisture products are currently available from multiple remote sensing platforms. Footprint-scale assessments of these products are generally restricted to limited number of densely-instrumented validation sites. However, by taking active and passive soil moisture products together with a third independent soil moisture estimates via land surface modeling, triple collocation (TC) can be applied to estimate the correlation metric of satellite soil moisture products (versus an unknown ground truth) over a quasi-global domain. Here, an assessment of Soil Moisture Active Passive (SMAP), Soil Moisture Ocean Salinity (SMOS) and Advanced SCATterometer (ASCAT) surface soil moisture retrievals via TC is presented. Considering the potential violation of TC error assumptions, the impact of active-passive and satellite-model error cross correlations on the TC-derived inter-comparison results is examined at in situ sites using quadruple collocation analysis. In addition, confidence intervals for the TC-estimated correlation metric are constructed from moving-block bootstrap sampling designed to preserve the temporal persistence of the original (unevenly-sampled) soil moisture time-series. This study is the first to apply TC to obtain a robust global-scale cross-assessment of SMAP, SMOS and ASCAT soil moisture retrieval accuracy in terms of anomaly temporal correlation. Our results confirm the overall advantage of SMAP (with a global average anomaly correlation of 0.76) over SMOS (0.66) and ASCAT (0.63) that has been established in several recent regional, ground-based studies. SMAP is also the best-performing product over the majority of applicable land pixels (52%), although SMOS and ASCAT each shows advantage in distinct geographic regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA