Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(36): 7411-7424, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39177485

RESUMEN

Azomethine ylides are generated using either organocatalysts or metal catalysts via a ballet of decarboxylative C-N coupling choreographed by prolines. These strategies enable diastereoselective [3 + 2] cycloaddition, C-C coupling, and ring annulation, providing sustainable routes. The synthesized pyrrolizines and other heterocycles have potential applications in the development of crucial biomolecules and pharmaceuticals. The endoselectivity of the azomethine ylide is realized and supported through DFT calculations.

2.
J Org Chem ; 89(4): 2703-2717, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38295826

RESUMEN

A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.

3.
Org Biomol Chem ; 21(12): 2524-2530, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36876635

RESUMEN

We developed an efficient and straightforward I2-catalyzed strategy for the synthesis of functionalized α-amidohydroxyketones and symmetrical and unsymmetrical bisamides using incipient benzimidate scaffolds as starting materials and moist-DMSO as a reagent and solvent. The developed method proceeds through chemoselective intermolecular N-C-bond formation of benzimidates and the α-C(sp3)-H bond of acetophenone moieties. The key advantages of these design approaches include broad substrate scope and moderate yields. High-resolution mass spectrometry of the reaction progress and labeling experiments provided suitable evidence regarding the possible mechanism. 1H nuclear magnetic resonance titration revealed notable interaction between the synthesized α-amidohydroxyketones and some anions as well as biologically important molecules, which revealed a promising recognition property of these valuable motifs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA