Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 48(43): 16340-16349, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31621723

RESUMEN

Controlling the connectivity and topology of solids is a versatile way to target desired physical properties. This is especially relevant in the realm of hybrid halide semiconductors, where the long-range connectivity of the inorganic substructural unit can lead to significant changes in optoelectronic properties such as photoluminescence, charge transport, and absorption. We present a new series of hybrid metal-halide semiconductors, (phenH2)BiI5·H2O, (2,2-bpyH2)BiI5, (BrbpyH)BiI4·H2O, (phenH2)2Pb3I10·2H2O, and (2,2-bpyH2)2Pb3I10 where (phenH2)2+ = 1,10-phenanthroline-1,10-diium, (2,2-bpyH2)2+ = 2,2'-bipyridine-1,1'-diium and (BrbpyH)+ = 6,6'-dibromo-2,2'-bipyridium. These compounds allow us to observe how the planarity of the cation, induced either through structural modification in the case of (phenH2)2+ or through non-covalent interactions in (BrbpyH)+, both relative to (2,2-bpyH2)2+, modifies the inorganic substructural unit. While the Pb2+ series of compounds show minimal changes in inorganic connectivity, we observe large differences in the Bi3+ series, ranging from 0-D dimers to corner- and edge-sharing 1-D chains of octahedra. We find that compounds containing (phenH2)2+ and (BrbpyH)+ pack more efficiently than those with (2,2-bpyH2)2+ due to their retention of planarity leading to greater inorganic connectivity. Electronic structure calculations and optical diffuse reflectance reveal that the band gaps of these compounds are influenced by the degree of inorganic connectivity and the inorganic substructural unit distances. These results show that the structure and planarity of organic cations can directly influence both the inorganic connectivity and the optical properties that could be tuned for certain optoelectronic applications.

2.
Inorg Chem ; 58(9): 5818-5826, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30900890

RESUMEN

Hybrid metal halides yield highly desirable optoelectronic properties and offer significant opportunity due to their solution processability. This contribution reports a new series of hybrid semiconductors, (C7H7)MX4 (M = Bi3+, Sb3+; X = Cl-, Br-, I-), that are composed of edge-sharing MX6 chains separated in space by π-stacked tropylium (C7H7+) cations; the inorganic chains resemble the connectivity of BiI3. The Bi3+ compounds have blue-shifted optical absorptions relative to the Sb3+ compounds that span the visible and near-IR region. Consistent with observations, DFT calculations reveal that the conduction band is composed of the tropylium cation and valence band primarily the inorganic chain: a charge-transfer semiconductor. The band gaps for both Bi3+ and Sb3+ compounds decrease systematically as a function of increasing halide size. These compounds are a rare example of charge-transfer semiconductors that also exhibit efficient crystal packing of the organic cations, thus providing an opportunity to study how structural packing affects optoelectronic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA