Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809474

RESUMEN

Although carbon textile reinforcement widely used to replace the steel reinforcing bars but the bonding strength of carbon textile is generally much smaller than that of common steel bars. This study examines the strengthening effect of concrete slab-type elements strengthened in flexure by carbon textile reinforcement according to the surface coating of textile and the amount of reinforcement. The effect of the surface coating of textile on the bond strength was evaluated through a direct pullout test with four different sizes of coating material. The surface coated specimens developed bond strength approximately twice that of the uncoated specimen. The flexural strengthening effect with respect to the amount of reinforcement was investigated by a series of flexural failure tests on full-scale reinforced concrete (RC) slab specimens strengthened by textile reinforced concrete (TRC) system. The flexural failure test results revealed that the TRC system-strengthened specimens develop load-carrying capacity that is improved to at least 150% compared to the non-strengthened specimen. The strengthening performance was not significantly influenced by the textile coating and was not proportional to the amount of reinforcement when this amount was increased, owing to the change in the failure mode. The outstanding constructability afforded by TRC strengthening was verified through field applications executing TRC strengthening by shotcreting on a concrete box culvert.

2.
Materials (Basel) ; 13(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33028007

RESUMEN

This study investigated the hardening process of alkali-activated material (AAM) mortar using calcium sulfoalumiante (CSA) expansive additive (CSA EA), which accelerates the initial reactivity of AAMs, and subsequent changes in ultrasonic pulse velocity (UPV). After the AAM mortar was mixed with three different contents of CSA EA, the setting and modulus of elasticity of the mortar at one day of age, which represent curing steps, were measured. In addition, UPV was used to analyze each curing step. The initial and final setting times of the AAM mortar could be predicted by analyzing the UPV results measured for 14 h. In addition, the dynamic modulus of elasticity calculated using the UPV results for 24 h showed a tendency similar to that of the static modulus of elasticity. The test results showed that the use of CSA EA accelerated the setting of the AAM mortar and increased the modulus of elasticity, and these results could be inferred using UPV. The proposed measurement method can be effective in evaluating the properties of a material that accelerates the initial reactivity.

3.
Materials (Basel) ; 13(20)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050400

RESUMEN

This paper deals with the long-term bonding and tensile strengths of textile reinforced mortar (TRM) exposed to harsh environments. The objective of this study was to investigate the long-term bonding and tensile strengths of carbon TRM by an accelerated aging method. Moisture, high temperature, and freezing-thaw cycles were considered to simulate harsh environmental conditions. Grid-type textiles were surface coated to improve the bond strength with the mortar matrix. A total of 130 TRM specimens for the bonding test were fabricated and conditioned for a prolonged time up to 180 days at varying moisture conditions and temperatures. The long-term bonding strength of TRM was evaluated by a series of bonding tests. On the other hand, a total of 96 TRM specimens were fabricated and conditioned at freezing-thaw conditions and elevated temperature. The long-term tensile strength of TRM was evaluated by a series of direct tensile tests. The results of the bonding test indicated that TRM was significantly degraded by moisture. On the other hand, the influence of the freezing-thaw conditions and high temperature on the tensile strength of the TRM was insignificant.

4.
Materials (Basel) ; 13(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882895

RESUMEN

Textile reinforced concrete (TRC) has widely been used for strengthening work for deteriorated reinforced concrete (RC) structures. The structural strengthening often requires accelerated construction with the aid of precast or prefabricated elements. This study presents an innovative method to strengthen an RC slab-type element in flexure using a precast panel made of carbon TRC. A total of five RC slabs were fabricated to examine the flexural strengthening effect. Two of them were strengthened with the precast panel and grouting material and another set of two slabs was additionally strengthened by tensile steel reinforcement. The full-scale slab specimens were tested by a three-point bending test and the test results were compared with the theoretical solutions. The results revealed that the ultimate load of the specimens strengthened with the TRC panel increased by at least 1.5 times compared to that of the unstrengthened specimen. The application of the precast TRC panel and grouting material for the strengthening of a prototype RC structure verified its outstanding constructability.

5.
Materials (Basel) ; 13(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414168

RESUMEN

This paper deals with flexural strengthening of reinforced concrete (RC) slabs with a carbon textile reinforced concrete (TRC) system. The surface coating treatment was applied to a carbon grid-type textile to increase the bond strength. Short fibers were incorporated into the matrix to mitigate the formation of shrinkage-induced cracks. The tensile properties of the TRC system were evaluated by a direct tensile test with a dumbbell-type grip method. The tensile test results indicated that the effect of the surface coating treatment of the textile on the bonding behavior of the textile within the TRC system was significant. Furthermore, the incorporation of short fibers in the matrix was effective to mitigate shrinkage-induced crack formation and to improve the tensile properties of the TRC system. Six full-scale slab specimens were strengthened with the TRC system and, subsequently, failure tested. The ultimate load-carrying capacity of the strengthened slabs was compared with that of an unstrengthened slab as well as the theoretical solutions. The failure test results indicated that the stiffness and the ultimate flexural capacity of the strengthened slab were at least 112% and 165% greater, respectively, than that of the unstrengthened slab. The test results further indicated that the strengthening effect was not linearly proportional to the amount of textile reinforcement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA