Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163138

RESUMEN

The five-year survival rate of lung cancer patients is very low, mainly because most newly diagnosed patients present with locally advanced or metastatic disease. Therefore, early diagnosis is key to the successful treatment and management of lung cancer. Unfortunately, early detection methods of lung cancer are not ideal. In this brief review, we described early detection methods such as chest X-rays followed by bronchoscopy, sputum analysis followed by cytological analysis, and low-dose computed tomography (LDCT). In addition, we discussed the potential of metabolomic fingerprinting, compared to that of other biomarkers, including molecular targets, as a low-cost, high-throughput blood-based test that is both feasible and affordable for early-stage lung cancer screening of at-risk populations. Accordingly, we proposed a paradigm shift to metabolomics as an alternative to molecular and proteomic-based markers in lung cancer screening, which will enable blood-based routine testing and be accessible to those patients at the highest risk for lung cancer.


Asunto(s)
Biomarcadores de Tumor/análisis , Broncoscopía/métodos , Detección Precoz del Cáncer/métodos , Genoma Humano , Neoplasias Pulmonares/diagnóstico , Metaboloma , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
2.
Cancers (Basel) ; 11(8)2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31362354

RESUMEN

Background: Lung cancer is the most common cause of cancer-related deaths worldwide. Early diagnosis is crucial to increase the curability chance of the patients. Low dose CT screening can reduce lung cancer mortality, but it is associated with several limitations. Metabolomics is a promising technique for cancer diagnosis due to its ability to provide chemical phenotyping data. The intent of our study was to explore metabolomic effects and profiles of lung cancer patients to determine if metabolic perturbations in the SSAT-1/polyamine pathway can distinguish between healthy participants and lung cancer patients as a diagnostic and treatment monitoring tool. Patients and Methods: Plasma samples were collected as part of the SSAT1 Amantadine Cancer Study. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and quantify metabolite concentrations in lung cancer patient and control samples. Standard statistical analyses were performed to determine whether metabolite concentrations could differentiate between healthy subjects and lung cancer patients, as well as risk prediction modeling applied to determine whether metabolic profiles could provide an indication of cancer progression in later stage patients. Results: A panel consisting of 14 metabolites, which included 6 metabolites in the polyamine pathway, was identified that correctly discriminated lung cancer patients from controls with an area under the curve of 0.97 (95% CI: 0.875-1.0). Conclusion: When used in conjunction with the SSAT-1/polyamine pathway, these metabolites may provide the specificity required for diagnosing lung cancer from other cancer types and could be used as a diagnostic and treatment monitoring tool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA