Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 26(70): 16690-16705, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32627921

RESUMEN

Metal dysregulation, oxidative stress, protein modification, and aggregation are factors strictly interrelated and associated with neurodegenerative pathologies. As such, all of these aspects represent valid targets to counteract neurodegeneration and, therefore, the development of metal-binding compounds with other properties to combat multifactorial disorders is definitely on the rise. Herein, the synthesis and in-depth analysis of the first hybrids of carnosine and 8-hydroxyquinoline, carnoquinolines (CarHQs), which combine the properties of the dipeptide with those of 8-hydroxyquinoline, are reported. CarHQs and their copper complexes were characterized through several techniques, such as ESI-MS and NMR, UV/Vis, and circular dichroism spectroscopy. CarHQs can modulate self- and copper-induced amyloid-ß aggregation. These hybrids combine the antioxidant activity of their parent compounds. Therefore, they can simultaneously scavenge free radicals and reactive carbonyl species, thanks to the phenolic group and imidazole ring. These results indicate that CarHQs are promising multifunctional candidates for neurodegenerative disorders and they are worthy of further studies.


Asunto(s)
Péptidos beta-Amiloides/química , Carnosina/química , Carnosina/farmacología , Cobre/farmacología , Estrés Oxidativo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Carnosina/síntesis química , Cobre/química , Unión Proteica/efectos de los fármacos
2.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509943

RESUMEN

Insulin-degrading enzyme (IDE) was applied to catalyze hydrolysis of Nociceptin/Orphanin 1-16 (OFQ/N) to show the involvement of the enzyme in degradation of neuropeptides engaged in pain transmission. Moreover, IDE degradative action towards insulin (Ins) was inhibited by the OFQ/N fragments, suggesting a possible regulatory mechanism in the central nervous system. It has been found that OFQ/N and Ins affect each other degradation by IDE, although in a different manner. Indeed, while the digestion of OFQ/N is significantly affected by the presence of Ins, the kinetic profile of the Ins hydrolysis is not affected by the presence of OFQ/N. However, the main hydrolytic fragments of OFQ/N produced by IDE exert inhibitory activity towards the IDE-mediated Ins degradation. Here, we present the results indicating that, besides Ins, IDE cleaves neuropeptides and their released fragments act as inhibitors of IDE activity toward Ins. Having in mind that IDE is present in the brain, which also contains Ins receptors, it cannot be excluded that this enzyme indirectly participates in neural communication of pain signals and that neuropeptides involved in pain transmission may contribute to the regulation of IDE activity. Finally, preliminary results on the metabolism of OFQ/N, carried out in the rat spinal cord homogenate in the presence of various inhibitors specific for different classes of proteases, show that OFQ/N proteolysis in rat spinal cord could be due, besides IDE, also to a cysteine protease not yet identified.


Asunto(s)
Insulina/metabolismo , Insulisina/metabolismo , Péptidos Opioides/metabolismo , Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cromatografía Liquida/métodos , Insulina/química , Insulisina/antagonistas & inhibidores , Espectrometría de Masas/métodos , Neuropéptidos/química , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Péptidos Opioides/química , Dolor/prevención & control , Dimensión del Dolor/métodos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Ratas , Receptor de Insulina/metabolismo , Médula Espinal/efectos de los fármacos , Nociceptina
3.
Metallomics ; 11(2): 278-281, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30627720

RESUMEN

Four specifically designed IDE mutants have been used to unveil the molecular basis of peptidase versus E1-like activity of the enzyme. We have found that physiological concentrations of copper(ii) ions inhibit the proteolytic activity of the enzyme towards small and large substrates but have no effect on the E1-like activity of the enzyme.


Asunto(s)
Insulisina/genética , Insulisina/metabolismo , Metales/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Cobre/metabolismo , Relación Estructura-Actividad , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA