Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38067736

RESUMEN

The rapid growth of electronic health records (EHRs) has led to unprecedented biomedical data. Clinician access to the latest patient information can improve the quality of healthcare. However, clinicians have difficulty finding information quickly and easily due to the sheer data mining volume. Biomedical information retrieval (BIR) systems can help clinicians find the information required by automatically searching EHRs and returning relevant results. However, traditional BIR systems cannot understand the complex relationships between EHR entities. Transformers are a new type of neural network that is very effective for natural language processing (NLP) tasks. As a result, transformers are well suited for tasks such as machine translation and text summarization. In this paper, we propose a new BIR system for EHRs that uses transformers for predicting cancer treatment from EHR. Our system can understand the complex relationships between the different entities in an EHR, which allows it to return more relevant results to clinicians. We evaluated our system on a dataset of EHRs and found that it outperformed state-of-the-art BIR systems on various tasks, including medical question answering and information extraction. Our results show that Transformers are a promising approach for BIR in EHRs, reaching an accuracy and an F1-score of 86.46%, and 0.8157, respectively. We believe that our system can help clinicians find the information they need more quickly and easily, leading to improved patient care.


Asunto(s)
Registros Electrónicos de Salud , Neoplasias , Humanos , Minería de Datos/métodos , Procesamiento de Lenguaje Natural , Redes Neurales de la Computación , Sistemas de Información , Neoplasias/terapia
2.
Healthcare (Basel) ; 11(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174810

RESUMEN

Biomedical-named entity recognition (bNER) is critical in biomedical informatics. It identifies biomedical entities with special meanings, such as people, places, and organizations, as predefined semantic types in electronic health records (EHR). bNER is essential for discovering novel knowledge using computational methods and Information Technology. Early bNER systems were configured manually to include domain-specific features and rules. However, these systems were limited in handling the complexity of the biomedical text. Recent advances in deep learning (DL) have led to the development of more powerful bNER systems. DL-based bNER systems can learn the patterns of biomedical text automatically, making them more robust and efficient than traditional rule-based systems. This paper reviews the healthcare domain of bNER, using DL techniques and artificial intelligence in clinical records, for mining treatment prediction. bNER-based tools are categorized systematically and represent the distribution of input, context, and tag (encoder/decoder). Furthermore, to create a labeled dataset for our machine learning sentiment analyzer to analyze the sentiment of a set of tweets, we used a manual coding approach and the multi-task learning method to bias the training signals with domain knowledge inductively. To conclude, we discuss the challenges facing bNER systems and future directions in the healthcare field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA