Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 80(4): 102, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36773109

RESUMEN

Salinity is one of the major challenges for cultivation of crops in a sustainable way because it severely affects plant growth and yield. Keeping this challenge in view, in the current study, a salt-tolerant Halomonas MV-19 was isolated from an extreme niche of mud volcano of Andaman Nicobar Island, India and identified on the basis of standard morphological, biochemical, and physiological tests and identified as Halomonas sulfidaeris strain MV-19 by 16S rRNA gene sequencing. The bacterium can grow on nutrient agar and nutrient broth supplemented with 3.5 M (≥ 20%) sodium chloride (NaCl). Sugar utilization assay revealed that H. sulfidaeris MV-19 utilizes only three sugars (dextrose, fructose, and mannose) from among twenty four tested sugars. The best growth of H. sulfidaeris MV-19 was observed in nutrient broth supplemented with 8% NaCl. When the broth was supplemented with dextrose, fructose, and mannose, the H. sulfidaeris MV-19 grew maximally in nutrient broth supplemented with 8% NaCl and 5% fructose. This strain produced exopolysaccharides (EPS) in nutrient broth supplemented with 8% NaCl and sugars (dextrose, fructose, and mannose). The EPS production was increased by 350% (three and half time) after addition of 5% fructose in nutrient broth compare with the EPS production in nutrient broth without supplemented with sugars. H. sulfidaeris MV-19 strain can produce EPS, which can help aggregate soil particle and reduced osmotic potential in soil, thus, be useful in alleviation of salinity stress in different crops cultivated in saline soils. The findings of the current investigation are expected to contribute towards effective abiotic stress management.


Asunto(s)
Halomonas , Manosa , ARN Ribosómico 16S/genética , Cloruro de Sodio , Suelo , Glucosa , Fructosa , Filogenia
2.
J Genet Eng Biotechnol ; 19(1): 146, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596780

RESUMEN

BACKGROUND: Chromobacterium species, through their bioactive molecules, help in combating biotic and abiotic stresses in plants and humans. The present study was aimed to identify, characterize and preserve in natural gums the violet-pigmented bacterial isolate TRFM-24 recovered from the rhizosphere soil of rice collected from Tripura state. RESULTS: Based on morphological, biochemical and 16S rRNA gene sequencing, the isolate TFRM-24 was identified as Chromobacterium violaceum (NAIMCC-B-02276; MCC 4212). The bacterium is saprophytic, free living and Gram negative. The strain was found positive for production of IAA, cellulase, xylanase and protease, and showed tolerance to salt (2.5%) and drought (-1.2 MPa). However, it showed poor biocontrol activity against soil-borne phytopathogens and nutrient-solubilizing abilitiets. C. violaceum strain TRFM-24 did not survive on tryptic soya agar (TSA) beyond 12 days between 4 and 32 °C temperature hence a method of preservation of this bacterium was attempted using different natural gums namely Acacia nilotica (babul), Anogeissus latifolia (dhavda), Boswellia serrata (salai) and Butea monosperma (palash) under different temperature regime (6-32 °C). The bacterium survived in babul gum (gum acacia), dhavda and salai solution at room temperature beyond a year. CONCLUSION: Based on polyphasic approach, a violet-pigmented isolate TRFM-24 was identified as Chromobacterim violaceum which possessed some attributes of plant and human importance. Further, a simple and low-cost preservation method of strain TRFM-24 at room temperature was developed using natural gums such as babul, dhavda and salai gums which may be the first report to our knowledge.

3.
FEMS Microbiol Lett ; 367(24)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33201985

RESUMEN

Genus Micrococcus is considered a high IAA producer. However, interestingly, there is no report on the tryptophan- independent pathway operation in this genus. Consequently, the present study was undertaken to evaluate high IAA production by Micrococcus aloeverae DCB-20 and generate reasonable evidence for the occurrence of the tryptophan-independent pathway. Strain DCB-20 produced a high quantity of 880.51 µM or 154.3 µg/mL IAA in LB broth supplemented with L-tryptophan. The tryptophan-independent pathway operation was supported by IAA production in Tris-minimal broth (TM broth) medium supplemented with acid hydrolyzed casein hydrolysate (casein acid hydolysate), which lacks tryptophan. The HPLC analysis showed the absence of tryptophan either from exogenous or endogenous sources in TM broth in the presence of casein acid hydrolysate inoculated with M. aloeverae DCB-20. The absence of tryptophan was further confirmed by the appearance of non-pigmented colonies of Chromobacterium violaceum strain TRFM-24 on Tris-minimal agar (TM agar) containing acid-hydrolyzed casein. This is probably the first report on IAA biosynthesis by M. aloeverae DCB-20 employing tryptophan-independent pathway. This simple technique can also be adapted to detect operation of the tryptophan-independent pathway in other bacteria.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Técnicas Microbiológicas/métodos , Micrococcus/metabolismo , Medios de Cultivo/química , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA