Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 28(3): 3159-3170, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32121989

RESUMEN

We present an efficient and robust source of photons at the 87Rb D1-line (795 nm) with a narrow bandwidth of δ = 226(1) MHz. The source is based on non-degenerate, cavity-enhanced spontaneous parametric down-conversion in a monolithic optical parametric oscillator far below threshold. The setup allows for efficient coupling to single mode fibers. A heralding efficiency of ηheralded = 45(5) % is achieved, and the uncorrected number of detected photon pairs is 3.8 × 103/(s mW). For pair generation rates up to 5 × 105/s, the source emits heralded single photons with a normalized, heralded, second-order correlation function g c(2)<0.01. The source is intrinsically stable due to the monolithic configuration. Frequency drifts are on the order of δ/20 per hour without active feedback on the emission frequency. We achieved fine-tuning of the source frequency within a range of >2 GHz by applying mechanical strain.

2.
Sci Rep ; 9(1): 13728, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551434

RESUMEN

Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, "slow light" and "fast light" behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.

3.
Rev Sci Instrum ; 84(4): 043102, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23635176

RESUMEN

Precisely timed detection of single photons plays an important role in the field of quantum information processing and fluorescence sensing. The method of time-correlated single photon counting is therefore constantly evolving and the associated instrumentation is being improved with new ideas and technologies. Simultaneous, time tagged readout of multiple detector channels is invaluable in many applications, spanning from fluorescence lifetime imaging in biology to the measurement of quantum optical correlations in basic research. Here we present a new integrated design, providing up to three independent input channels, a very short dead time, very high throughput, and a timing resolution of 25 ps at reasonable cost and small size. Apart from design features and test results of the instrument, we show an application in quantum optics, namely, the measurement of the photon statistics of a heralded single photon source based on cavity-enhanced spontaneous parametric down-conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA