Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(17): 5814-5824, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29633838

RESUMEN

The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb aCo b[Fe(CN)6] c· mH2O (RbCoFe-PBA) as core with the isostructural K jNi k[Cr(CN)6] l· nH2O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

2.
J Phys Condens Matter ; 28(23): 236003, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27160792

RESUMEN

Antiferromagnetic order at [Formula: see text] K has been identified in Mn(III)F(salen), salen = H14C16N2O2, an S = 2 linear-chain system. Using single crystals, specific heat studies performed in magnetic fields up to 9 T revealed the presence of a field-independent cusp at the same temperature where (1)H NMR studies conducted at 42 MHz observed dramatic changes in the spin-lattice relaxation time, T 1, and in the linewidths. Low-field (less than 0.1 T) magnetic susceptibility studies of single crystals and randomly-arranged microcrystalline samples reveal subtle features associated with the transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA