Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1248044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954988

RESUMEN

Inoculation with Bacillus subtilis is a promising approach to increase plant yield and nutrient acquisition. In this context, this study aimed to estimate the B. subtilis concentration that increases yield, gas exchange, and nutrition of lettuce plants in a hydroponic system. The research was carried out in a greenhouse in Ilha Solteira, Brazil. A randomized block design with five replications was adopted. The treatments consisted of B. subtilis concentrations in nutrient solution [0 mL "non-inoculated", 7.8 × 103, 15.6 × 103, 31.2 × 103, and 62.4 × 103 colony forming units (CFU) mL-1 of nutrient solution]. There was an increase of 20% and 19% in number of leaves and 22% and 25% in shoot fresh mass with B. subtilis concentrations of 15.6 × 103 and 31.2 × 103 CFU mL-1 as compared to the non-inoculated plants, respectively. Also, B. subtilis concentration at 31.2 × 103 CFU mL-1 increased net photosynthesis rate by 95%, intercellular CO2 concentration by 30%, and water use efficiency by 67% as compared to the non-inoculated treatments. The concentration of 7.8 × 103 CFU mL-1 improved shoot accumulation of Ca, Mg, and S by 109%, 74%, and 69%, when compared with non-inoculated plants, respectively. Inoculation with B. subtilis at 15.6 × 103 CFU mL-1 provided the highest fresh leaves yield while inoculation at 15.6 × 103 and 31.2 × 103 CFU mL-1 increased shoot fresh mass and number of leaves. Concentrations of 7.8 × 103 and 15.6 × 103 increased shoot K accumulation. The concentrations of 7.8 × 103, 15.6 × 103, and 31.2 × 103 CFU mL-1 increased shoot N accumulation in hydroponic lettuce plants.

2.
Plants (Basel) ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687354

RESUMEN

Inoculation with Azospirillum brasilense has promisingly increased plant yield and nutrient acquisition. The study aimed to estimate the dose of A. brasilense that increases yield, gas exchange, nutrition, and foliar nitrate reduction. The research was carried out in a greenhouse at Ilha Solteira, in a hydroponic system in randomized blocks with four replicates. The treatments consisted of doses of inoculation with A. brasilense strains AbV5 and AbV6 via nutrient solution (0, 8, 16, 32, and 64 mL 100 L-1). Inoculation with A. brasilense at calculated doses between 20 and 44 mL provided the highest fresh and dry mass of shoots and roots, number of leaves, and leaf yield. In addition, the calculated doses of inoculation with A. brasilense increased the accumulation of N, P, K, Ca, Mg, S, B, Fe, Mn, and Zn in shoots and roots, except the accumulation of Ca in roots. It also increased cell membrane integrity index (15%), relative water content (13%), net photosynthesis rate (85%), intracellular CO2 concentration (15%), total chlorophyll (46%), stomatal conductance (56%), transpiration (15%), and water use efficiency (59%). Hence, inoculation with A. brasilense at doses between 20 and 44 mL 100 L-1 is considered the best approach for increasing the growth, yield, accumulation of nutrients, and gas exchange of hydroponically grown iceberg lettuce.

3.
Environ Sci Pollut Res Int ; 30(33): 80245-80260, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37294492

RESUMEN

Potentially toxic elements (PTE) in soil like copper (Cu) have been common in agricultural and mining areas worldwide. The sustainable remediation of these areas has been shown to have high socio-environmental relevance and phytoremediation is one of the green technologies to be considered. The challenge is to identify species that are tolerant to PTE, and to assess their phytoremediation potential. The objective of this study was to evaluate the physiological response of Leucaena leucocephala (Lam.) de Wit and to determine the species tolerance and phytoremediation potential to concentrations of Cu in the soil (100, 200, 300, 400 and 500 mg/dm3). The photosynthetic rate was not affected, while the content of chlorophylls decreased as Cu concentrations increased. There was an increased in stomatal conductance and water use efficiency from the treatment of 300. The root biomass and the length were bigger than the shoots, in the treatments above 300. Cu accumulation was greater in the roots than in the shoot of the plants, thus, the Cu translocation index to the shoot was lower. The ability to absorb and accumulate, mainly, Cu in the roots, allowed the development and growth of plants, since the parameters of photosynthesis and biomass accumulation were not affected by the Cu excess. This accumulation in the roots is characterized as a strategy for the phytostabilization of Cu. Therefore, L. leucocephala is tolerant to the Cu concentrations evaluated and has a potential phytoremediation of Cu in the soil.


Asunto(s)
Fabaceae , Contaminantes del Suelo , Cobre/análisis , Contaminantes del Suelo/análisis , Fotosíntesis , Plantas , Suelo , Biodegradación Ambiental , Raíces de Plantas/química
4.
Plant Physiol Biochem ; 194: 489-498, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36512983

RESUMEN

Nitrogen metabolism and the production of primary and secondary metabolites vary according to biotic and abiotic factors such as trace elements (TE) stress, and can, therefore, be considered biomarkers. The present study evaluated the effect of copper (Cu) and iron (Fe) TE, separately, on the metabolism of nitrogen compounds and biomass production, partitioned into shoot and roots of Leucaena leucocephala (Lam.) de Wit., and identified possible defense mechanisms linked to nitrogen metabolism. At 120 days of cultivation, the biomass production of L. leucocephala was higher when exposed to excess Fe than Cu. Nonetheless, the biomass gain (%) of plants exposed to Cu was higher, especially the biomass gains in roots. The tolerance and biomass production of L. leucocephala is related to the regulation of nitrogen metabolism and production of secondary metabolites. The biochemistry of plant metabolism against the excess of Cu and Fe TE manifested similarly, but with some specifics regarding the chemical nature of each metal. There was a reduction in the content of ureides and proteins and an increase in amino acids in the roots in relation to the increase in Cu and Fe concentrations. There was low accumulation of proline in the roots in treatments 400 and 500 mg/dm3 compared to the control for both TE. On the other hand, the total phenolic compounds in the roots increased. Our results indicate that the increased synthesis of amino acids and the accumulation of phenolic compounds is involved in the tolerance of L. leucocephala to Cu and Fe.


Asunto(s)
Fabaceae , Compuestos de Nitrógeno , Compuestos de Nitrógeno/metabolismo , Compuestos de Nitrógeno/farmacología , Fabaceae/metabolismo , Metales/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Raíces de Plantas/metabolismo , Nitrógeno/metabolismo , Aminoácidos/metabolismo
5.
J Environ Sci Health B ; 56(9): 852-859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34405759

RESUMEN

Growth traits, yield, N content, photosynthetic pigments, ammonia and amino acids were measured to verify the effect of the interaction between N, Ni, and 2,4-D applied in the cotton crop. The objective was to study the hormonal effect of 2,4-D associated with the application of N and Ni in coverage to improve yield. The N (0, 40, 80, and 120 kg ha-1) and Ni(0, 300, 450, and 600 g ha-1) were applied to the soil in the square phenological growth stage. The commercial 2,4-D DMA® BR (0 and 1.8 g a.e ha-1) was applied to the leaves at the same growth stage. The supply of N in cover fertilization up to 120 kg ha-1 was beneficial for cotton, providing greater yield and content of photosynthetic pigments. The application of 2,4-D in a hormetic dose, as a synthetic auxin during the beginning of flowering, proved to be a promising technique to improve cotton yield. This end-of-cycle response is related to the requirement for auxins during the cotton fruiting process.


Asunto(s)
Níquel , Nitrógeno , Ácido 2,4-Diclorofenoxiacético , Gossypium , Nitrógeno/análisis , Suelo
6.
Physiol Mol Biol Plants ; 26(8): 1635-1648, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32801492

RESUMEN

Soil waterlogging is a common problem in some agricultural areas, including regions under soybean (Glycine max) cultivation. In waterlogged soils, soil O2 depletion occurs due to aerobic microorganisms and plants, affecting the metabolic and physiological processes of plants after suffering anoxia in their root tissue. Another harmful factor in this situation is the exponential increase in the availability of iron (Fe) in the soil, which may result in absorption of excess Fe. The present study sought to evaluate the response mechanisms in soybean leaves 'Agroeste 3680' by physiological and biochemical analyses associating them with the development of pods in non-waterlogged and waterlogged soil, combined with one moderate and two toxic levels of Fe. Gas exchange was strongly affected by soil waterlogging. Excess Fe without soil waterlogging reduced photosynthetic pigments, and potentiated this reduction when associated with soil waterlogging. Starch and ureide accumulation in the first newly expanded trifoliate leaves proved to be response mechanisms induced by soil waterlogging and excess Fe, since plants cultivated under soil non-waterlogged soil at 25 mg dm-3 Fe showed lower contents when compared to stressed plants. Thus, starch and ureide accumulation could be considered efficient biomarkers of phytotoxicity caused by soil waterlogging and excess Fe in soybean plants. The reproductive development was abruptly interrupted by the imposition of stresses, leading to a loss of pod dry biomass, which was largely due to the substantial decrease in the net photosynthetic rate, as expressed by area (A), the blockage of carbohydrate transport to sink tissues and an increase of malondialdehyde (MDA). The negative effect on reproductive development was more pronounced under waterlogged soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA