Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523305

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Linfocitos T CD8-positivos , Linfocitos T Colaboradores-Inductores , Pulmón
2.
Front Cardiovasc Med ; 9: 847809, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811697

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) employs angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entrance, and studies have suggested that upon viral binding, ACE2 catalytic activity could be inhibited; therefore, impacting the regulation of the renin-angiotensin-aldosterone system (RAAS). To date, only few studies have evaluated the impact of SARS-CoV-2 infection on the blood levels of the components of the RAAS. The objective of this study was to determine the blood levels of ACE, ACE2, angiotensin-II, angiotensin (1-7), and angiotensin (1-9) at hospital admission and discharge in a group of patients presenting with severe or critical evolution of coronavirus disease 2019 (COVID-19). We showed that ACE, ACE2, angiotensin (1-7), and angiotensin (1-9) were similar in patients with critical and severe COVID-19. However, at admission, angiotensin-II levels were significantly higher in patients presenting as critical, compared to patients presenting with severe COVID-19. We conclude that blood levels of angiotensin-II are increased in hospitalized patients with COVID-19 presenting the critical outcome of the disease. We propose that early measurement of Ang-II could be a useful biomarker for identifying patients at higher risk for extremely severe progression of the disease.

3.
Viruses ; 13(2)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669276

RESUMEN

Background: Coronavirus disease 19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin-converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to the accumulation of bradykinin. Methods: In this case control study, we tested two pharmacological inhibitors of the kinin-kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant, and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Results: Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophils, which are indicators of disease recovery. Conclusions: In this small cohort, we found evidence for safety and a beneficial role of pharmacological inhibition of the kinin-kallikrein system in two markers that indicate improved disease recovery.


Asunto(s)
Bradiquinina/análogos & derivados , Tratamiento Farmacológico de COVID-19 , Proteína Inhibidora del Complemento C1/uso terapéutico , Sistema Calicreína-Quinina/efectos de los fármacos , Calicreínas/antagonistas & inhibidores , Adulto , Anciano , Bradiquinina/uso terapéutico , Estudios de Casos y Controles , Reposicionamiento de Medicamentos , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Persona de Mediana Edad
4.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697943

RESUMEN

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Glucemia/metabolismo , Infecciones por Coronavirus/complicaciones , Complicaciones de la Diabetes/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Monocitos/metabolismo , Neumonía Viral/complicaciones , Adulto , COVID-19 , Línea Celular , Infecciones por Coronavirus/metabolismo , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Femenino , Glucólisis , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/virología , Pandemias , Neumonía Viral/metabolismo , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA