Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(10): 103001, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739364

RESUMEN

Skimmed supersonic beams provide intense, cold, collision-free samples of atoms and molecules and are one of the most widely used tools in atomic and molecular laser spectroscopy. High-resolution optical spectra are typically recorded in a perpendicular arrangement of laser and supersonic beams to minimize Doppler broadening. Typical Doppler widths are nevertheless limited to tens of MHz by the residual transverse-velocity distribution in the gas-expansion cones. We present an imaging method to overcome this limitation that exploits the correlation between the positions of the atoms and molecules in the supersonic expansion and their transverse velocities, and thus their Doppler shifts. With the example of spectra of (1s)(np) ^{3}P_{0-2}←(1s)(2s) ^{3}S_{1} transitions to high Rydberg states of metastable triplet He, we demonstrate the suppression of the residual Doppler broadening and a reduction of the full linewidths at half maximum to only about 1 MHz in the UV. Using a retroreflection arrangement for the laser beam and a cross-correlation method, we determine Doppler-free spectra without any signal loss from the selection, by imaging, of atoms within ultranarrow transverse-velocity classes. As an illustration, we determine the ionization energy of triplet metastable He and confirm the significant discrepancy between recent experimental [G. Clausen et al., Phys. Rev. Lett. 127, 093001 (2021)PRLTAO0031-900710.1103/PhysRevLett.127.093001] and high-level theoretical [V. Patkós et al., Phys. Rev. A 103, 042809 (2021)PLRAAN2469-992610.1103/PhysRevA.103.042809] values of this quantity.

2.
Phys Chem Chem Phys ; 23(38): 21606-21622, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34569565

RESUMEN

The energy dependence of the rates of the reactions between He+ and ammonia (NY3, Y = {H,D}), forming NY2+, Y and He as well as NY+, Y2 and He, and the corresponding product branching ratios have been measured at low collision energies Ecoll between 0 and kB·40 K using a recently developed merged-beam technique [Allmendinger et al., ChemPhysChem, 2016, 17, 3596]. To avoid heating of the ions by stray electric fields, the reactions are observed within the large orbit of a highly excited Rydberg electron. A beam of He Rydberg atoms was merged with a supersonic beam of ammonia using a curved surface-electrode Rydberg-Stark deflector, which is also used for adjusting the final velocity of the He Rydberg atoms, and thus the collision energy. A collision-energy resolution of about 200 mK was reached at the lowest Ecoll values. The reaction rate coefficients exhibit a sharp increase at collision energies below ∼kB·5 K and pronounced deviations from Langevin-capture behaviour. The experimental results are interpreted in terms of an adiabatic capture model describing the rotational-state-dependent orientation of the ammonia molecules by the electric field of the He+ atom. The model faithfully describes the experimental observations and enables the identification of three classes of |JKMp〉 rotational states of the ammonia molecules showing different low-energy capture behaviour: (A) high-field-seeking states with |KM| ≥ 1 correlating to the lower component of the umbrella-motion tunnelling doublet at low fields. These states undergo a negative linear Stark shift, which leads to strongly enhanced rate coefficients; (B) high-field-seeking states subject to a quadratic Stark shift at low fields and which exhibit only weak rate enhancements; and (C) low-field-seeking states with |KM| ≥ 1. These states exhibit a positive Stark shift at low fields, which completely suppresses the reactions at low collision energies. Marked differences in the low-energy reactivity of NH3 and ND3-the rate enhancements in ND3 are more pronounced than in NH3-are quantitatively explained by the model. They result from the reduced magnitudes of the tunnelling splitting and rotational intervals in ND3 and the different occupations of the rotational levels in the supersonic beam caused by the different nuclear-spin statistical weights. Thermal capture rate constants are derived from the model for the temperature range between 0 and 10 K relevant for astrochemistry. Comparison of the calculated thermal capture rate coefficients with the absolute reaction rates measured above 27 K by Marquette et al. (Chem. Phys. Lett., 1985, 122, 431) suggests that only 40% of the close collisions are reactive.

3.
Phys Rev Lett ; 127(9): 093001, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506206

RESUMEN

In a recent breakthrough in first-principles calculations of two-electron systems, Patkós, Yerokhin, and Pachucki [Phys. Rev. A 103, 042809 (2021)PLRAAN2469-992610.1103/PhysRevA.103.042809] have performed the first complete calculation of the Lamb shift of the helium 2 ^{3}S_{1} and 2 ^{3}P_{J} triplet states up to the term in α^{7}m. Whereas their theoretical result of the frequency of the 2 ^{3}P←2 ^{3}S transition perfectly agrees with the experimental value, a more than 10σ discrepancy was identified for the 3 ^{3}D←2 ^{3}S and 3 ^{3}D←2 ^{3}P transitions, which hinders the determination of the He^{2+} charge radius from atomic spectroscopy. We present here a new measurement of the ionization energy of the 2 ^{1}S_{0} state of He [960 332 040.491(32) MHz] which we use in combination with the 2 ^{3}S_{1}←2 ^{1}S_{0} interval measured by Rengelink et al. [Nat. Phys. 14, 1132 (2018).NPAHAX1745-247310.1038/s41567-018-0242-5] and the 2 ^{3}P←2 ^{3}S_{1} interval measured by Zheng et al. [Phys. Rev. Lett. 119, 263002 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.263002] and Cancio Pastor et al. [Phys. Rev. Lett. 92, 023001 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.023001] to derive experimental ionization energies of the 2 ^{3}S_{1} state [1152 842 742.640(32) MHz] and the 2 ^{3}P centroid energy [876 106 247.025(39) MHz]. These values reveal disagreements with the α^{7}m Lamb shift prediction by 6.5σ and 10σ, respectively, and support the suggestion by Patkós et al. of an unknown theoretical contribution to the Lamb shifts of the 2 ^{3}S and 2 ^{3}P states of He.

4.
Phys Chem Chem Phys ; 23(4): 2676-2685, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480928

RESUMEN

The fully state-selected reactions between H2+ molecules in the X+ 2Σg+(v+ = 0, N+ = 0) state and HD molecules in the X 1Σg+(v = 0, J = 0) state forming H3+ + D and H2D+ + H have been studied at collision energies Ecoll between 0 and kB·30 K with a resolution of about 75 mK at the lowest energies. H2 molecules in a supersonic beam were prepared in Rydberg-Stark states with principal quantum number n = 27 and merged with a supersonic beam of ground-state HD molecules using a curved surface-electrode Rydberg-Stark decelerator and deflector. The reaction between H2+ and HD was studied within the orbit of the Rydberg electron to avoid heating of the ions by stray electric fields. The reaction was observed for well-defined and adjustable time intervals, called reaction-observation windows, between two electric-field pulses. The first pulse swept all ions away from the reaction volume and its falling edge defined the beginning of the reaction-observation window. The second pulse extracted the product ions toward a charged-particle detector located at the end of a time-of-flight tube and its rising edge defined the end of the reaction-observation window. Monitoring and analysing the time-of-flight distributions of the H3+ and H2D+ products in dependence of the duration of the reaction-observation window enabled us to obtain information on the kinetic-energy distribution of the product ions and determine branching ratios of the H3+ + D and H2D+ + H reaction channels. The mean product-kinetic-energy release is 0.46(5) eV, representing 27(3)% of the available energy, and the H3+ + D product branching ratio is 0.225(20). The relative reaction rates correspond closely to Langevin capture rates down to the lowest energies probed experimentally (≈kB·50 mK).

5.
J Phys Chem A ; 124(2): 379-385, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31834801

RESUMEN

The interaction potential characterizing the ground electronic state of MgAr+ has been determined from the photoelectron spectrum recorded from the a 3Π0 metastable state of MgAr at high resolution by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy. The photoelectron spectrum provides information on the first ten vibrational levels of MgAr+ and leads to the determination of the adiabatic ionization energy of metastable MgAr (38 742.3(20) cm-1), the ground state dissociation energy of MgAr+ (1254(60) cm-1), and to the characterization of the rovibrational photoionization dynamics of MgAr.

6.
Phys Rev Lett ; 125(26): 263401, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449728

RESUMEN

The reaction between He^{+} and CH_{3}F forming predominantly CH_{2}^{+} and CHF^{+} has been studied at collision energies E_{coll} between 0 and k_{B}·10 K in a merged-beam apparatus. To avoid heating of the ions by stray electric fields, the reaction was observed within the orbit of a highly excited Rydberg electron. Supersonic beams of CH_{3}F and He(n) Rydberg atoms with principal quantum number n=30 and 35 were merged and their relative velocity tuned using a Rydberg-Stark decelerator and deflector, allowing an energy resolution of 150 mK. A strong enhancement of the reaction rate was observed below E_{coll}/k_{B}=1 K. The experimental results are interpreted with an adiabatic capture model that accounts for the state-dependent orientation of the polar CH_{3}F molecules by the Stark effect as they approach the He^{+} ion. The enhancement of the reaction rate at low collision energies is primarily attributed to para-CH_{3}F molecules in the J=1, KM=1 high-field-seeking states, which represent about 8% of the population at the 6 K rotational temperature of the supersonic beam.

7.
Chemphyschem ; 17(22): 3596-3608, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27860125

RESUMEN

Studies of ion-molecule reactions at low temperatures are difficult because stray electric fields in the reaction volume affect the kinetic energy of charged reaction partners. We describe a new experimental approach to study ion-molecule reactions at low temperatures and present, as example, a measurement of the H2++H2→H3++H reaction with the H2+ ion prepared in a single rovibrational state at collision energies in the range Ecol /kB =5-60 K. To reach such low-collision energies, we use a merged-beam approach and observe the reaction within the orbit of a Rydberg electron, which shields the ions from stray fields. The first beam is a supersonic beam of pure ground-state H2 molecules and the second is a supersonic beam of H2 molecules excited to Rydberg-Stark states of principal quantum number n selected in the range 20-40. Initially, the two beams propagate along axes separated by an angle of 10°. To merge the two beams, the Rydberg molecules in the latter beam are deflected using a surface-electrode Rydberg-Stark deflector. The collision energies of the merged beams are determined by measuring the velocity distributions of the two beams and they are adjusted by changing the temperature of the pulsed valve used to generate the ground-state H2 beam and by adapting the electric-potential functions applied to the electrodes of the deflector. The collision energy is varied down to below Ecol /kB =10 K, that is, below Ecol ≈1 meV, with an energy resolution of 100 µeV. We demonstrate that the Rydberg electron acts as a spectator and does not affect the cross sections, which are found to closely follow a classical Langevin-capture model in the collision energy range investigated. Because all neutral atoms and molecules can be excited to Rydberg states, this method of studying ion-molecule reactions is applicable to other reactions involving singly charged cations.

8.
Phys Rev Lett ; 115(13): 133202, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26451553

RESUMEN

Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He_{2} molecules in the metastable a ^{3}Σ_{u}^{+} state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n=200 and assign their fine structure. The ionization energy of metastable He_{2} and the lowest rotational interval of the X^{+} ^{2}Σ_{u}^{+} (ν^{+}=0) ground state of ^{4}He_{2}^{+} have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of ^{4}He_{2}^{+} [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He_{2}^{+}.

9.
J Chem Phys ; 138(24): 244202, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23822237

RESUMEN

A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal trans-4(')-(dimethylamino)-N-methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet-submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated in a study of 33f ← nd Rydberg-Rydberg transitions in Xe with n in the range 16-31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of ∼3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of (129)Xe and (131)Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.

10.
J Chem Phys ; 135(21): 214202, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22149785

RESUMEN

A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for (20)Ne and (22)Ne.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA