Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 168(4): 546-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26152566

RESUMEN

(220)Rn mitigation can be achieved by delay chamber technique, which relies on the advantage of its short half-life. However, flow rate as well as inlet-outlet position for the delay chamber can have a significant impact on (220)Rn concentration distribution patterns and hence transmission factor. In the present study, computational fluid dynamics simulations to estimate the concentration distribution has been carried out in a chamber of 0.5 m(3) for the combination of six different inlet-outlet positions and five different flow rates. Subsequently, the transmission factor (TF) for the chamber was evaluated and found to be highly dependent on the flow rate and inlet-outlet positions. For ease of scale up, the dependency of TF on the flow rate and the inlet-outlet positions is best summarised by relative transmission factor (RTF), which is the ratio of the TFs for the case of inlet and outlet on different faces to that on the same face.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Simulación por Computador , Hidrodinámica , Radón/análisis , Humanos
2.
J Environ Radioact ; 136: 105-11, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24929505

RESUMEN

Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Modelos Teóricos , Monitoreo de Radiación , Radón/análisis
3.
J Environ Radioact ; 136: 16-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24860913

RESUMEN

The release of (220)Rn gas (conventionally referred to as thoron) is an issue of concern from the radiological point of view for occupational environments pertaining to the thorium fuel cycle. Studies for understanding its release and developing systems to control it are crucial for exposure control research. A thorough study of the "Delay Volume Technique" for mitigation of (220)Rn has been carried out. Experiments have been carried out with (220)Rn source and associated measurement system in a cubical chamber (delay chamber) of 0.5 m(3) volume. For different flow conditions and inlet-outlet positions, (220)Rn transmission factor has been obtained. Computational Fluid Dynamics (CFD) technique has been employed for these experimental conditions and the simulated transmission factors have been compared. The results show that the flow and the position of the inlet and outlet play an imperative role in the transportation, mixing and subsequent mitigation of thoron inside the chamber. Predictive capability of CFD technique for such delay volume experiments has been validated in this work. A comparison has been made with uniform mixing model and it is found that the results of simulation differ appreciably from that of uniform mixing model at the tested flow regime.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Monitoreo de Radiación , Radón/análisis , Hidrodinámica , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA